

Suivi environnemental 2020

Suivi de la mortalité Suivi de l'activité chiroptérologique en altitude – TrackBat

Régulation PRC BAT©

Parc éolien des Croquettes 5 éoliennes Cher (18), Centre-Val de Loire

Janvier 2021

Partager

3 rue Cope Cambe 34230 PLAISSAN RCS Montpellier 809 520 588 + 33 (0)467 885 822

SAS au capital variable de 6000€ N°SIRET 809 520 588 000 25 Rédaction :
Camille Mangelinck
Chargée d'études
camille.mangelinck@sensoflife.com

Technique:
Hubert Lagrange
Directeur R&D
hubert.lagrange@sensoflife.com

Contrôle Qualité :
Pauline Rico
Directrice d'études
pauline.rico@sensoflife.com

SOMMAIRE

I. Ca	dre général du parc	
l.1.	Contexte de l'étude	
1.2.	Localisation et description du parc	
1.3.	Objectifs	
	t initial	
II.1.	Flore et habitats	
II.2.	Avifaune	
II.3.	Chiroptères	
11.4.	Mammifères terrestres	
III. Imj	pact de l'éolien sur l'avifaune et les chiroptères	
III.1.	Sensibilité des oiseaux	
III.1		
III.1 III.1		
III.2. III.2	Sensibilité des chiroptères	
III.2		
IV. Sui	vi de la mortalité sur le parc éolien de Croquettes	
IV/ 1	Protocolo	1.
IV.1.	Protocole	
IV.2.	Mortalité brute constatée au pied des éoliennes	14
	Mortalité brute constatée au pied des éoliennes	1
IV.2. IV.2	Mortalité brute constatée au pied des éoliennes 1.1. Analyse spatiale des collisions sur le parc éolien de Croquettes 1.1. Analyse temporelle des collisions sur le parc éolien de Croquettes	1 1
IV.2. IV.2 IV.2	Mortalité brute constatée au pied des éoliennes	111
IV.2. IV.2 IV.2 IV.2	Mortalité brute constatée au pied des éoliennes	
IV.2. IV.2 IV.2 IV.2 IV.3. IV.4.	Mortalité brute constatée au pied des éoliennes	
IV.2. IV.2 IV.2 IV.3 IV.4. IV.4	Mortalité brute constatée au pied des éoliennes	
IV.2. IV.2 IV.2 IV.2 IV.2 IV.3. IV.4. IV.4	Mortalité brute constatée au pied des éoliennes	
IV.2. IV.2 IV.2 IV.2 IV.3 IV.4. IV.4 IV.4	Mortalité brute constatée au pied des éoliennes	
IV.2. IV.2 IV.2 IV.2 IV.3. IV.4. IV.4 IV.5. IV.5	Mortalité brute constatée au pied des éoliennes 1.1. Analyse spatiale des collisions sur le parc éolien de Croquettes 2.2. Analyse météorologique des collisions sur le parc éolien de Croquettes 2.3. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes Occupation du sol et surface prospectée Calcul des biais 1.1. Test de prédation 2.2. Test du taux de détection Estimation de la mortalité réelle 3.1. Mortalité réelle des chiroptères sur le parc éolien les Croquettes	
IV.2. IV.2 IV.2 IV.2 IV.3 IV.4. IV.4 IV.4	Mortalité brute constatée au pied des éoliennes	
IV.2. IV.2 IV.2 IV.2 IV.2 IV.3. IV.4. IV.4 IV.5. IV.5	Mortalité brute constatée au pied des éoliennes 1. Analyse spatiale des collisions sur le parc éolien de Croquettes 2. Analyse temporelle des collisions sur le parc éolien de Croquettes 3. Analyse météorologique des collisions sur le parc éolien de Croquettes 3. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes Occupation du sol et surface prospectée Calcul des biais 1. Test de prédation 2. Test du taux de détection Estimation de la mortalité réelle 3. Mortalité réelle des chiroptères sur le parc éolien les Croquettes 3. Calcul des notes de risque Sensibilité des espèces retrouvées	
IV.2. IV.2 IV.2 IV.2 IV.2 IV.3. IV.4. IV.4 IV.5 IV.5 IV.5	Mortalité brute constatée au pied des éoliennes 1. Analyse spatiale des collisions sur le parc éolien de Croquettes 2. Analyse temporelle des collisions sur le parc éolien de Croquettes 3. Analyse météorologique des collisions sur le parc éolien de Croquettes 3. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes Occupation du sol et surface prospectée Calcul des biais 1. Test de prédation 2. Test du taux de détection Estimation de la mortalité réelle 3. Mortalité réelle des chiroptères sur le parc éolien les Croquettes 3. Calcul des notes de risque Sensibilité des espèces retrouvées 3. Oiseaux	
IV.2. IV.2 IV.2 IV.2 IV.3. IV.4. IV.4 IV.5 IV.5 IV.5 IV.6	Mortalité brute constatée au pied des éoliennes 1. Analyse spatiale des collisions sur le parc éolien de Croquettes 2. Analyse temporelle des collisions sur le parc éolien de Croquettes 3. Analyse météorologique des collisions sur le parc éolien de Croquettes 3. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes Occupation du sol et surface prospectée Calcul des biais 1. Test de prédation 2. Test du taux de détection Estimation de la mortalité réelle 3. Mortalité réelle des chiroptères sur le parc éolien les Croquettes 3. Calcul des notes de risque Sensibilité des espèces retrouvées 5. Oiseaux 5. Chiroptères	
IV.2. IV.2 IV.2 IV.2 IV.3. IV.4. IV.4 IV.5 IV.5 IV.5 IV.6	Mortalité brute constatée au pied des éoliennes 1. Analyse spatiale des collisions sur le parc éolien de Croquettes 2. Analyse temporelle des collisions sur le parc éolien de Croquettes 3. Analyse météorologique des collisions sur le parc éolien de Croquettes 3. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes Occupation du sol et surface prospectée Calcul des biais 1. Test de prédation 2. Test du taux de détection Estimation de la mortalité réelle 3. Mortalité réelle des chiroptères sur le parc éolien les Croquettes 3. Calcul des notes de risque Sensibilité des espèces retrouvées 3. Oiseaux	
IV.2. IV.2 IV.2 IV.2 IV.3. IV.4. IV.4 IV.5. IV.5 IV.6. IV.6 V. Suit	Mortalité brute constatée au pied des éoliennes 1. Analyse spatiale des collisions sur le parc éolien de Croquettes 1. Analyse temporelle des collisions sur le parc éolien de Croquettes 1. Analyse météorologique des collisions sur le parc éolien de Croquettes 1. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes 1. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes 1. Test de prédation 1. Test de prédation 1. Test du taux de détection 1. Mortalité réelle des chiroptères sur le parc éolien les Croquettes 1. Mortalité réelle des oiseaux sur le parc éolien de Croquettes 1. Mortalité réelle des notes de risque 1. Sensibilité des espèces retrouvées 1. Oiseaux 1. Oiseaux 1. Oiseaux 1. Matériel et méthodes	
IV.2. IV.2 IV.2 IV.2 IV.3. IV.4. IV.4 IV.5 IV.5 IV.5 IV.6 IV.6 IV.6	Mortalité brute constatée au pied des éoliennes 1. Analyse spatiale des collisions sur le parc éolien de Croquettes 1. Analyse temporelle des collisions sur le parc éolien de Croquettes 1. Analyse météorologique des collisions sur le parc éolien de Croquettes 1. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes 1. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes 1. Test de prédation 1. Test de prédation 1. Test du taux de détection Estimation de la mortalité réelle 1. Mortalité réelle des chiroptères sur le parc éolien les Croquettes 1. Mortalité réelle des oiseaux sur le parc éolien de Croquettes 1. Calcul des notes de risque Sensibilité des espèces retrouvées 1. Oiseaux 1. Chiroptères Wi de l'activité des chiroptères par TrackBat Matériel et méthodes 1. Enregistrement acoustique	

V.2.	Re	ésultats des suivis d'activité chiroptérologique	27
V.	.2.1.	Activité corrigée par espèce	
V.	.2.1.	Activité en fonction de la date et de l'heure	28
V.	.2.2.	Activité corrélée avec la vitesse du vent et de la température	29
V.	.2.3.	Zoom sur les espèces présentes	29
V.3.	Sy	nthèse des niveaux de patrimonialité des espèces contactées et sensibilités aux éoliennes	34
VI. Re	égulo	ation pour la préservation des chiroptères - ProBat	35
VI.1	. Pr	ésentation de la régulation ProBat	35
VI	l.1.1.	Détermination de l'activité chiroptérologique théorique	
VI	l.1.2.	Détermination de l'activité des chiroptères en temps réel	36
VI	l.1.3.	Arrêts machines sur CROQ-03 du parc de Croquettes pour la préservation des chiroptères	37
VI.2	. Ev	valuation du risque résiduel	38
VII. D	iscus	sion	40
VII.1	L.	Répartition de l'activité des chiroptères sur le parc éolien de Croquettes	40
VII.2	2.	Suivi de la mortalité sur le parc éolien de Croquettes	40
VI	II.2.1.	Comparaison des impacts avifaunistiques avec l'étude d'impact initiale	
VI	II.2.2.	Comparaison des impacts chiroptérologiques avec l'étude d'impact initiale	40
VII.3	3.	Comparaison mortalité et activité chiroptérologique	40
VIII. Co	onclu	ısion	41
IX. Bi	ibliog	graphie	42
X. Ai	nnex	es	46
,,,			
X.1.		che de renseignements et photographies calibrées des cadavres d'oiseaux et de chauves-sour s sur le parc éolien de Croquettes	
		·	
X.2. (Dür		ableau 25 : Récapitulatif des données de mortalité des oiseaux, classées par espèce, en Europo 20)	
X.3.	Ta	ibleau 26 : Récapitulatif des données de mortalité des chiroptères, classées par espèce, en Eu	rope
(Dür	rr. 20	20)	53

TABLE DES ILLUSTRATIONS

Carte 1 : Approche scalaire du site d'implantation du parc éolien de Croquettes	6
Carte 2 : Localisation des cadavres, trouvés entre mai et octobre 2020., sous les éoliennes du parc éolie	
Croquettes	16
Carte 3 : Surfaces prospectables et types de culture, sous les 5 éoliennes du parc éolien Les Croquettes, entre	e mai
et octobre 2020	20
Carte 4 : Carte de répartition et de migration de la Pipistrelle de Nathusius	30
Figure 1 : Roitelet à Triple bandeau, espèce la plus impactée en France concernant la mortalité par collision	avec
les pales d'éoliennes, (Sens Of Life 2020)	9
Figure 2 : éolienne avec une pale peinte en noire.	10
Figure 3 : l'Aigle royal semble impacté par l'installation d'éoliennes sur son territoire, CCO domaine public	10
Figure 4 : Stratégie de franchissement d'un parc éolien sur le littoral audois (source : LPO Aude, 2001)	
Figure 5 : Description du phénomène de barotraumatisme	12
Figure 6 : Représentation du transect de prospection réalisé pour la recherche de cadavres sous une éolienn	ie.14
Figure 7 : Comparaison de la dentition pour identification de la Noctule de Leisler	14
Figure 8 : Cadavre de chauve-souris parmi 19 leurres utilisés pour tester le taux de détection	21
Figure 9 : Faucon crécerelle. Sens Of Life 2020	24
Figure 10 : Pipistrelle commune. CCO domaine public	24
Figure 11 : Pipistrelle de Nathusius, Sens Of Life 2020.	24
Figure 12 : Exemple de fichier son collecté sur le système d'enregistrement TrackBat	25
Figure 13 : Microphone mobilisé pour les études en altitude (à gauche) et boîtier TrackBat avec microph	ones
intégrés, installé sur la nacelle d'une éolienne (à droite).	25
Figure 14: Représentation des volumes de détection en fonction des groupes d'espèces	26
Figure 15 : Distance de détection des espèces de chauves-souris en fonction de leur fréquence d'émission	26
Figure 16 : Pipistrelle commune. CCO domaine public	29
Figure 17 : Sonogramme de cris émis par une Pipistrelle commune	29
Figure 18 : Pipistrelle de Nathusius. CCO domaine public	30
Figure 19 : Sonogramme des cris de Pipistrelle de Nathusius/Kuhl	30
Figure 20 : Pipistrelle de Kuhl. CC0 domaine public	31
Figure 21 : Noctule commune. CCO domaine public.	31
Figure 22 : Sonogramme de cris émis par une Noctule commune	
Figure 23 : Noctule de Leisler. CCO domaine public	32
Figure 24 : Sonogramme de cris émis par une Noctule de Leisler	32
Figure 25 : Sérotine commune. CC0 domaine public.	
Figure 26 : Sonogramme de cris émis par une Sérotine commune	33
Figure 27 : Représentation de l'activité des chiroptères en fonction de la date et de l'heure sur le parc éolie	
Bouin en 2009 (Lagrange et al., 2009)	
Figure 28 : Comparaison des temps d'arrêt pour un bridage sur seuils (6 m.s ⁻¹ et 10°C, zone encadrée en ro	ouge)
avec l'activité chiroptérologique enregistrée (patatoïde bleu à jaune)	
Figure 29 : Comparaison des temps d'arrêt pour un bridage sur seuils (6m.s ⁻¹ et 10°C, zone encadrée en ro	ouge)
avec l'activité chiroptérologique protégée (patatoïde bleu à jaune)	36
Figure 30: Principe de fonctionnement du système ProBat	
Figure 31 : Répartition de l'activité des chiroptères du 26/08/2020 au 31/10/2020 sur CROQ-03 en fonction	
date et de l'heure sur le parc éolien de Croquettes	
Figure 32 : Arrêts ProBat du 26 août au 31 octobre 2020 sur CROQ-03	
Figure 33 : Activité des chauves-souris alors que le rotor de CROQ-03 tournait	
Figure 34 : Cycle biologique des chiroptères, LPO Touraine	40

Graphique 1 : Principales espèces retrouvées sous les éoliennes en France (Source : Rapport LPO, Geoffrey Marx, 2016)9
Graphique 2 : Corrélation entre le nombre de rapaces avec un comportement à risque et la mortalité, pendant 3
ans sur 13 parcs éoliens au nord de l'Espagne (Lekuona & Ursùa 2006)9
Graphique 3 : Répartition des cadavres en fonction des éoliennes du parc éolien Les Croquettes, entre mai et
octobre 2020
Graphique 4 : Répartition de la position des cadavres en fonction de la distance au mât, sur le parc éolien Les
Croquettes, entre mai et octobre 2020
Graphique 5 : Répartition de la position des cadavres en fonction leur orientation par rapport au mât de l'éolienne
la plus proche, sur le parc éolien de Croquettes, en 2020
Graphique 6 : Répartition des cadavres en fonction de la date, parc éolien de Croquettes, de mai à octobre 2020
Graphique 7 : Répartition des collisions en fonction de la culture, corrigées avec un coefficient surfacique, sur le
parc éolien de Croquettes en 2020
Graphique 8 : Répartition des cadavres en fonction de la hauteur de la surface au sol, sur le parc éolien de
Croquettes en 2020
Graphiques 9 : Proportion des espèces contactées en nacelle de l'éolienne CROQ-03 du parc éolien de Croquettes,
entre mai et octobre 2020
Graphique 10 : Activité des chiroptères en fonction de la date, en nacelle de l'éolienne CROQ-03 du parc éolien
de Croquettes
Graphique 11 : Activité des chiroptères en fonction de l'heure, enregistrée entre mai et octobre 2020, en nacelle
de l'éolienne CROQ-03 du parc éolien de Croquettes
Graphique 12 : Modélisation de l'activité des chiroptères en fonction de la vitesse du vent
Graphique 13 : Modélisation de l'activité des chiroptères en fonction de la température
Graphique 14 : Répartition des arrêts ProBat en fonction des espèces contactées
Graphique 15 : Nombre de contacts à risque résiduel par espèces aux abords de CROQ-03 39
Tableau 1 : Coordonnées des éoliennes de Croquettes, selon le référentiel WGS84/Pseudo Mercator5
Tableau 2 : Comparaison indicative des différentes causes de mortalité anthropique de l'avifaune en France (en
haut, LPO, AMBE - 2010) et aux Etats-Unis (en bas, Erickson et al., 2005)8
Tableau 3 : Vulnérabilité à l'éolien par espèce (Groupe Chiroptères de la SFEPM, 2016)
Tableau 4 : Liste des oiseaux et des chauves-souris retrouvés lors des suivis de mortalité sur le parc éolien Les
Croquettes, entre mai et octobre 2020
Tableau 5 : Caractéristiques météorologiques des trois jours précédents les collisions constatées sur le parc de
Croquettes entre mai et octobre 2020
Tableau 6 : Couvert végétal et surface prospectée pour chaque éolienne du parc éolien les Croquettes en 2020. Les
cadavres retrouvés au sol sont représentés en orange
Tableau 7 : Évaluation du taux de détection de cadavres sous chaque éolienne du parc éolien de Croquettes 21
Tableau 8 : Mortalité estimée des chiroptères selon les formules de Bastos et al. (2013), d'Erickson et al. (2005),
Huso (2010) et Jones et al. (2009) sur le parc éolien de Croquettes, entre mai et octobre 2020
Tableau 9 : Mortalité des chiroptères, corrigée selon les coefficients surfaciques, sur le parc éolien des Croquettes,
entre mai et octobre 2020. Les éoliennes indiquées en vert présentent une mortalité conforme à la bibliographie
et les éoliennes indiquées en rouge présentent une mortalité plus élevée que la bibliographie (Rydell et al., 2010).
72 Table 20 Martal's (additional and a language
Tableau 10 : Mortalité estimée des oiseaux selon les formules de os et al. (2013), d'Erickson et al. (2005), Huso
(2010) et Jones et al. (2009) sur le parc éolien de Croquettes, entre mai et octobre 2020
Tableau 11 : Mortalité des oiseaux, corrigée selon les coefficients surfaciques, sur le parc éolien de Croquettes,
entre mai et octobre 2020. Les éoliennes indiquées en vert présentent une mortalité conforme à la bibliographie
et les éoliennes indiquées en rouge présentent une mortalité plus élevée que la bibliographie (Marx, 2017) 23 Tableau 12 : Calcul de la note de risque d'une espèce à l'éolien, en fonction de sa sensibilité et de son statut de
conservation à l'échelle nationale

Tableau 13 : Calcul des notes de risque pour chaque espèce de chiroptère identifiée pour laquelle une collision a
été constatée sur le parc éolien de Croquettes entre mai et octobre 202024
Tableau 14 : Possibilité d'identification des chauves-souris européennes en fonction de leurs émissions
ultrasonores
Tableau 15 : Coefficient de détectabilité des principales espèces de chauves-souris européennes
Tableau 16 : Nombre de contacts bruts et corrigés en fonction du volume de détection de chaque espèce de
chiroptères, sur le parc éolien de Croquettes, entre mai et octobre 2020
Tableau 17 : Activité des chiroptères en fonction de la température (°C) et de la vitesse du vent (m.s ⁻¹) en nacelle
de l'éolienne CROQ-03 du parc éolien de Croquettes, entre mai et octobre 202029
Tableau 18 : Données d'activité de la Pipistrelle commune sur le parc éolien de Croquettes en 2020 30
Tableau 19 : Données d'activité de la Pipistrelle de Nathusius sur le parc éolien de Croquettes en 2020 31
Tableau 20 : Données d'activité de la Pipistrelle de Kuhl sur le parc éolien de Croquettes en 2020 31
Tableau 21 : Données d'activité de la Noctule commune sur le parc éolien de Croquettes en 2020 32
Tableau 22 : Données d'activité de la Noctule de Leisler sur le parc éolien de Croquettes en 2020 32
Tableau 23 : Données d'activité de la Sérotine commune sur le parc éolien de Croquettes en 2020
Tableau 24 : Synthèse des valeurs patrimoniales (statuts de protection et de conservation) de chaque espèce de
chiroptère recensée sur le parc éolien de Croquettes entre mai et octobre 2020
X.2. Tableau 25 : Récapitulatif des données de mortalité des oiseaux, classées par espèce, en Europe (Dürr,
2020). 50
X.3. Tableau 26 : Récapitulatif des données de mortalité des chiroptères, classées par espèce, en Europe (Dürr,
2020). 53

I. Cadre général du parc

1.1. Contexte de l'étude

WPO est l'opérateur du parc éolien des Croquettes, composé de 5 éoliennes, implanté dans le Cher (18). Cette installation a été mise en service en 2012, elle est donc réputée ICPE. Une expertise environnementale initiale a été réalisée par l'association Nature 18, la Fédération Départementale des Chasseurs du Cher et le Muséum d'Histoire Naturelle de Bourges en 2005 :

- L'association Nature 18 a travaillé sur les parties avifaune et flore locales remarquables,
- La Fédération des Chasseurs du Cher a étudié les zones sensibles pour l'avifaune et les mammifères terrestres.
- Mission Nature et le Muséum de Bourges ont étudié les chiroptères.

Selon l'arrêté ICPE du 26 août 2011 et l'arrêté modificatif du 22 juin 2020, relatifs aux installations de production d'électricité utilisant l'énergie mécanique du vent, l'exploitant d'une installation soumise à autorisation ou bien à déclaration¹ au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement, doit réaliser un suivi environnemental dans les 12 mois qui suivent la mise en service du parc éolien puis une fois tous les dix ans. Ce suivi post-implantation sert à estimer l'incidence du parc sur l'avifaune et les chiroptères, notamment en termes de mortalité due à la présence des aérogénérateurs, mais aussi à s'assurer que la construction et l'exploitation du parc ne dégradent pas l'état de conservation de certaines espèces et des habitats protégés.

Le suivi environnemental doit être réalisé avec le protocole reconnu par le ministère chargé des installations classées et doit également être conforme à la règlementation de l'étude d'impact qui définit les modalités de suivi des effets du parc sur l'avifaune et les chauves-souris (Article R122-14 du code de l'environnement). Il comprend un suivi de l'activité chiroptérologique en altitude, en continu et sans aucun échantillonnage de durée sur l'ensemble de la période d'activité des chauves-souris, ainsi qu'un suivi de la mortalité au pied des éoliennes.

Ce rapport présente donc le suivi environnemental réalisé par Sens Of Life en 2020. Il inclut les résultats des inventaires sur le terrain, les impacts et les mesures à adopter sur ce parc pour réduire l'incidence sur les oiseaux et les chauves-souris.

1.2. Localisation et description du parc

Ce parc, constitué de 5 éoliennes, se situe sur la commune de Quincy (18120), dans le département du Cher (18), en région Centre-Val de Loire. Les cinq turbines sont des Nordex N90, pour une puissance totale installée de 12 MW. Le Tableau 1 indique les coordonnées géographiques des éoliennes, selon le référentiel WGS84/Pseudo Mercator.

Eolienne	X	Υ
CROQ-01	47.153736	2.174341
CROQ-02	47.149922	2.174912
CROQ-03	47.145640	2.176209
CROQ-04	47.141709	2.179021
CROQ-05	47.138668	2.181529

Tableau 1 : Coordonnées des éoliennes de Croquettes, selon le référentiel WGS84/Pseudo Mercator.

CROQ-05 47.138668 2.181529

Le parc éolien les Croquettes est implanté sur un plateau dont l'aire d'étude immédiate culmine à 121 mètres d'altitude. Les cinq éoliennes sont alignées dans un paysage dominé par des parcelles agricoles exploitées de manière intensive et situé entre les communes de Quincy et Mehun-sur-Yèvre Carte 1). Il est à noter que l'autoroute A71 longe la droite du parc éolien. Aucune mare ni aucun cours d'eau n'a été identifié dans leur périmètre immédiat. Les cultures présentes sont en grande majorité des graminées.

Dans les environs du parc, dans un rayon de 30 km, 79 zones naturelles d'intérêt reconnu ont été recensées.

Dans l'aire d'étude intermédiaire (à moins de 10 km du site), 12 zones ont été recensées :

- 2 sites inscrits au titre de la Directive Oiseaux (ZICO, ZPS),
- 8 Zones Naturelles d'Intérêt Ecologique, Faunistique et Floristique de type I (ZNIEFF I),
- 2 Zone Naturelle d'Intérêt Ecologique, Faunistique et Floristique de type II (ZNIEFF II).

Dans l'aire d'étude éloignée (entre 10 et 30 km du site), 67 zones ont été recensées :

- 4 zones concernées par un Arrêté de Protection Biotope,
- 1 Réserve Naturelle Nationale,
- 7 sites inscrits au titre de la Directive Habitats (ZSC, SIC, PSIC),
- 49 Zones Naturelles d'Intérêt Ecologique, Faunistique et Floristique de type I (ZNIEFF I),
- 6 Zones Naturelles d'Intérêt Ecologique, Faunistique et Floristique de type II (ZNIEFF II).

1.3. Objectifs

Les parcs éoliens peuvent avoir une incidence sur certaines espèces protégées, dont certains oiseaux et les chiroptères. Les impacts potentiels peuvent être classés en trois catégories :

- Une mortalité directe, accidentelle :
 - o Par collision avec les pales en mouvement,
 - o Par barotraumatisme à proximité de l'extrados des pales en mouvement,
 - O De manière plus anecdotique par collision contre le mât.
- Une perte d'habitat, temporaire en phase travaux ou permanente après construction, liée à la destruction d'espace de vie, de chasse ou de reproduction ;
- Un effet épouvantail, à nouveau temporaire et/ou permanent lié aux bruits, aux vibrations, à l'éclairage par exemple, perturbant les animaux résidents ou présentant un effet barrière aux migrateurs. Ces dérangements peuvent aussi bien éloigner les animaux (bruit, phobie des structures verticales et autres) que les attirer (chaleur des machines attirant les insectes, proies des chauves-souris par exemple).

Ces impacts peuvent êtres très faibles à critiques suivant les configurations des parcs éoliens. Ils dépendent du site, de son utilisation par les chauves-souris et de la sensibilité des espèces présentes. Ils dépendent également du type d'éoliennes, de leur organisation, de leur fonctionnement, de la configuration du parc éolien, de son environnement et des conditions météorologiques. Les exploitants de parcs doivent donc s'assurer que la construction et l'exploitation de chaque parc ne dégradent pas l'état de conservation des espèces et des habitats.

La stratégie d'inventaire qui a été mise en œuvre permet d'avoir une bonne connaissance des fonctionnalités écologiques du site et est adaptée aux effets potentiels d'un parc éolien sur le milieu naturel, prenant en considération les informations préalables sur l'étude d'impact initial du parc. Ainsi, un nombre de sorties conforme au protocole national de 2018 a été mis en place.

¹ Point 3.7 de l'annexe I de l'arrêté du 26 août 2011 et article 9 de l'arrêté du 22 juin 2020.

Approche scalaire du site d'implantation Parc éolien de Croquettes Cher (18)

Sens Of Life, 2020. Fond de carte: Google satellite.

Carte 1 : Approche scalaire du site d'implantation du parc éolien de Croquettes.

II. Etat initial

L'objectif de cette partie est de faire ressortir les espèces à enjeux identifiées lors de l'étude d'impact réalisée par Nature 18, la Fédération Départementale des Chasseurs du Cher, Mission Nature et le Muséum d'Histoire Naturelle de Bourges en 2005, afin de les comparer avec les résultats de ce suivi post-implantation en 2020.

II.1. Flore et habitats

Aucun inventaire floristique détaillé n'a été réalisé au cours de l'étude d'impact en 2005.

La zone d'étude se situe en Champagne Berrichonne caractérisée par des milieux ouverts constitués de cultures céréalières intensives composés majoritairement de cultures de blé, orge, colza, maïs et tournesol. Plusieurs vallées caractérisent le milieu : la vallée de l'Yèvre, de l'Auron et de l'Arnon. Quelques pelouses calcaires persistent et abritent une faune et une flore remarquables. Quelques bois, forêt et haies caractérisent également ce milieu, attirant notamment de nombreuses espèces d'oiseaux inféodées à ce type de milieu.

II.2. Avifaune

L'association Nature 18 et la Fédération des Chasseurs du Cher ont effectué le suivi de l'avifaune au cours de différentes sorties.

Sur la zone d'étude, une liste de 32 espèces a été réalisée par Nature 18, en mettant en avant cinq espèces remarquables : l'Œdicnème criard (Burhinus oedicnemus), le Busard Saint-Martin (Circus cyaneus), la Caille des blés (Coturnix coturnix), la Traquet motteux (Oenanthe oenanthe) et le Tarier des prés (Saxicola torquata).

Une attention particulière a été portée sur la **Grue cendrée** (*Grus grus*), puisque le principal couloir de migration pré- et postnuptial de l'espèce en France, situé dans l'axe Nord-Est/Sud-Ouest, passe par le Cher. Le département est également propice à l'hivernage de l'espèce, notamment un site connu : l'étang de Craon situé à l'est de Bourges (une centaine d'individus). En migration prénuptiale, 47 communes du Cher ont été survolées par les Grues cendrées et 45 communes survolées lors de la migration postnuptiale. En 2005, des passages concernant la migration prénuptiale ont été observés en moyenne de la mi-février à la mi-mars. Au niveau des effectifs, ce sont environ 170 individus qui ont survolé la zone d'étude. Pour la migration postnuptiale, des passages ont été observés de la mi-octobre à la mi-novembre en 2005 dans le département du Cher, avec environ 2500 individus survolant la zone d'étude.

La Fédération des Chasseurs du Cher a listé 25 espèces sur la zone d'étude. Parmi elles, une espèce est protégée <u>au niveau européen</u> et classée en annexe I de la Directive Oiseaux : le **Busard Saint-Martin** (*Circus cyaneus*).

<u>Au niveau national</u>, 21 espèces sont protégées: l'Alouette des champs (Alauda arvensis), la Bergeronnette grise (Motacilla alba), le Bruant proyer (Emberiza calandra), le Bruant jaune (Emberiza citrinella), la Fauvette grisette (Sylvia communis), l'Hirondelle rustique (Hirunda rustica), la Mésange bleue (Parus caeruleus), la Mésange charbonnière (Parus major), le Moineau domestique (Passer domesticus), le Pinson des arbres (Fringilla coelebs), le Rougegorge familier (Erithacus rubecula), le Rougequeue noir (Phoenicurus ochruros), le Tarier pâtre (Saxicola torquata), le Pic vert (Picus veridis), le Pic épeiche (Dendrocopos major), la Mouette rieuse (Chroicocephalus ridibundus), le Héron cendré (Ardea cinerea), le Busard Saint-Martin (Circus cyaneus), la Buse variable (Buteo buteo), le Faucon crécerelle (Falco tinnunculus) et la Chouette effraie (Tyto alba).

<u>Au niveau régional</u>, seule la **Mouette rieuse** (*Chroicocephalus ridibundus*) est considérée comme rare sur le site.

II.3. Chiroptères

Deux nuits de prospection ont été effectuées par Mission Nature en août et en septembre 2005. La **Pipistrelle commune** (*Pipistrellus* pipistrellus) a été contactée au cours des deux sorties, la **Sérotine commune** (*Eptesicus serotinus*) contactée en août, la **Noctule commune** (*Nyctalus noctula*) contactée en septembre, la **Noctule de Leisler** (*Nyctalus leisleri*) contactée pendant les deux sorties.

Le Museum d'Histoire Naturelle de Bourges a complété l'étude de Mission Nature par un comptage des chiroptères en altitude (80 m) via un micro embarqué sur un ballon d'hélium. Les espèces contactées sont les suivantes : la Pipistrelle de Kuhl (Pipistrellus kuhlii), la Pipistrelle de Nathusius (Pipistrellus nathusii) et la Noctule commune (Nyctalus noctula).

II.4. Mammifères terrestres

La Fédération des Chasseurs du Cher a répertorié 4 espèces de mammifères terrestres : le **Chevreuil d'Europe** (*Capreolus capreolus*), le **Lièvre d'Europe** (*Lepus europeus*), le **Lapin de garenne** (*Oryctolagus cuniculus*) et la **Martre des pins/Fouine** (genre *Martes*).

III. Impact de l'éolien sur l'avifaune et les chiroptères

III.1.Sensibilité des oiseaux

L'effet des parcs éoliens sur l'avifaune est très variable et dépend de plusieurs facteurs :

- La phénologie des espèces (hivernage, nidification, passage migratoire ou oiseaux sédentaires) et les modalités d'utilisation du site par les oiseaux ;
- La sensibilité des espèces aux différents effets potentiels de l'activité éolienne :
 - Effets directs (Smith & Dwyer, 2016): la collision directe avec les pales d'éoliennes, causant la mort des individus,
 - Effets indirects (Smith & Dwyer, 2016): les perturbations ou dérangements, qui provoquent l'évitement de ces infrastructures et se manifestent de différente façon: la perte d'habitat et l'effet « barrière ».
- Les caractéristiques du projet (nombre et positionnement des éoliennes, hauteur des mâts, orientation du parc...), de l'environnement local (Kitano and Shiraki 2013) et des conditions météorologiques (Barrios & Rodríguez, 2004 ; De Lucas et al., 2008 ; Kerlinger et al., 2010).

Les données de la littérature scientifique internationale sur les suivis de parcs éoliens en phase d'exploitation permettent d'apprécier des sensibilités divergentes pour deux catégories d'espèces :

- Une première sensible aux perturbations engendrées par ces infrastructures, qui subissent l'effet « barrière », l'éloignement, voire de dérangement au nid, et donc au risque de perte de territoire vital. Ces espèces farouches sont en général peu sensibles au risque de collision ;
- La seconde, à l'inverse, avec des espèces sensibles aux risques de collision avec les pales, qui sont moins concernées par les effets d'évitement (Grünkorn et al., 2009), de perte de territoire ou de dérangement.

Cette approche caricaturale nécessite beaucoup de précautions dans l'analyse des impacts d'un projet éolien. Les paragraphes suivants détaillent l'état actuel des connaissances sur les sensibilités de l'avifaune en fonction des espèces, et de leur statut sur site.

III.1.1. Collision

En comparaison avec d'autres origines anthropiques (lignes électriques, routes, prédation par les animaux domestiques, chasse, pesticides...), les parcs éoliens ont un faible impact sur la mortalité directe de l'avifaune (Erickson *et al.*, 2005, Loss *et al.*, 2015) .

Le risque de collision avec les éoliennes est très variable et dépend :

- De la sensibilité des espèces, avec plusieurs groupes d'espèces impactées (migrateurs : Johnson et al., 2003 ; déclin d'une population de Lyrurus tetrix : Zeiler & Grünschachner-Berger, 2009 ; les rapaces : De Lucas et al., 2008, Hernández-Pliego et al., 2015 ; les oiseaux chanteurs : Morinha et al., 2014.
- De la saison (Barrios & Rodríguez, 2004);
- Des caractéristiques du site d'étude (de Lucas et al., 2008); Ana Teresa Marques et al., 2014, (Thaxter et al., 2017).

Cette affirmation est confirmée au niveau national par de nombreuses publications scientifiques, comme le confirme la synthèse des suivis de mortalité réalisée par la LPO sur 12,5 % des parcs éoliens en exploitation en France (Marx, 2017).

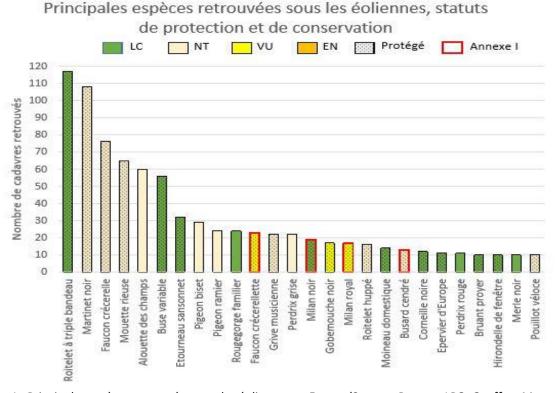
Cause de mortalité en France (LPO, AMBE – 2010)	Estimation de la mo	ortalité annuelle			
Ligne HT (> 63 kV)	80 à 120 oiseaux / km / an (en zone sensible) / réseau aérier de 10 000 km : estimation = 8 à 12 millions / an.				
Ligne MT (20 à 63 kV)	40 à 100 oiseaux / km / an (en zone sensible) / réseau aérie de 460 000 km : estimation = 18 à 46 millions / an.				
Autoroute	30 à 100 oiseaux / km / an / réseau terrestre de 10 000 km estimation = 300 000 à 1 million / an.				
Cause de mortalité aux USA (Erickson et al.	Estimation de la mortalité	Davisantana			
2005)	annuelle	Pourcentage			
Bâtiments et fenêtres	550 000 000	58,20 %			
Installations électriques (pylônes et câbles)	130 000 000	13,70 %			
Chats (prédation)	100 000 000	10,60 %			
Véhicules (trafic routier)	80 000 000	8,50 %			
Antennes et tours de communication	4 500 000	0,50 %			
Eoliennes	28 500	<0,01 %			
Avions	25 000	<0,01 %			
Autres causes (marées noires, pêches accidentelles, etc.)	Non calculée	Non calculé			

Tableau 2 : Comparaison indicative des différentes causes de mortalité anthropique de l'avifaune en France (en haut, LPO, AMBE - 2010) et aux Etats-Unis (en bas, Erickson et al., 2005)

Le manque de standardisation de protocoles de suivi de mortalité et la robustesse très variable de ces suivis (Marx, 2017) empêchent d'avoir des chiffres de mortalité représentatifs par pays. En France, les données varient entre 0,74 oiseau/éolienne/an (sur les 91 parcs qui ont réalisé des suivis de mortalité entre 1997 et 2015) à 2,15 oiseaux/éolienne/an (sur les 9 parcs analysés avec des suivis plus robustes, réalisés sur 48 semaines avec 1 prospection/semaine et un rayon de 50 mètres).

Le nombre de cadavres dans le monde est inconnu (Pagel *et al.*, 2013), mais ceux comptabilisés jusqu'à présent en Europe s'élèvent à 14 822 individus de plus de 250 espèces différentes, dont 5545 cas de mortalité en Espagne, 4196 en Allemagne, 1791 en Belgique et 1391 en France (Dürr, 2020).

Les espèces les plus touchées en Europe (Dürr, 2020) sont :


- Le Vautour fauve (quasi exclusivement en Espagne),
- Le Goéland argenté puis la Mouette rieuse (en Belgique essentiellement),
- La Buse variable (en Allemagne principalement),
- La Mouette rieuse (en Belgique principalement),
- Le Milan royal (en Allemagne principalement),
- Le Faucon crécerelle (en Espagne et en moindre mesure en France et Allemagne),
- Le Martinet noir (surtout en France et en Allemagne),
- L'Alouette des champs (surtout en Allemagne, France et Espagne),
- Le Canard colvert (en Allemagne principalement),
- Le Pygargue à queue blanche (en Allemagne principalement),
- Le Bruant proyer (en Espagne principalement).

Même si le nombre de cadavres augmente à chaque actualisation de la synthèse des données de mortalité en Europe réalisée par Tobias Dürr, l'ordre du classement reste sensiblement le même depuis 2015, confirmant la sensibilité de ces espèces à l'impact éolien.

En France, les oiseaux les plus impactés par les éoliennes sont les Passériformes, avec 49,3 % des cadavres totaux (Marx, 2017). Les espèces les plus sensibles sont les suivantes (Dürr, 2020 ; Marx, 2017) :

- Le Roitelet triple-bandeau (en migration postnuptiale essentiellement),
- Le Martinet noir (envol des jeunes et migration),
- Le Faucon crécerelle (espèce la plus touchée au niveau de la population nationale),
- L'Alouette des champs,
- La Buse variable (en migration postnuptiale essentiellement),
- La Mouette rieuse.
- L'Étourneau sansonnet...

Graphique 1 : Principales espèces retrouvées sous les éoliennes en France (Source : Rapport LPO, Geoffrey Marx, 2016)

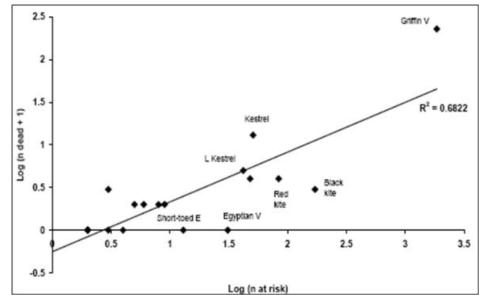
Pour les oiseaux migrateurs, le risque de collision peut dépendre de la hauteur de déplacement, de la phénologie migratoire des espèces (solitaire, en groupes familiaux, sociaux, etc.), mais aussi de l'importance du flux migratoire (probabilité de collision proportionnelle aux effectifs). Le rapport entre intensité de la migration et nombre de victimes de collisions, au sein de la période de migration n'est cependant pas toujours vérifié, et est plus complexe qu'on ne le pensait jusqu'à présent. Les conditions de visibilité, dépendantes de la météo, jouent certainement un grand rôle (Aschwanden et al., 2018). Le risque de collision dépend donc des éoliennes, certaines étant plus impactantes que d'autres, par leur emplacement ou leur disposition (en zone de nidification d'une espèce sensible, perpendiculaire aux axes migratoires majeurs, mât treillis...) (Thaxter et al., 2017; Marques et al., 2020).

Les oiseaux sédentaires et nicheurs semblent intégrer la présence des éoliennes sur leur territoire et se tiennent en général à distance des turbines (100-300 m) (Strickland *et al.*, 2001 ; Winkelman, 1992 ; Thomas, 2000) sauf en cas de facteur attractif à proximité comme des champs labourés ou moissonnés qui augmentent les ressources alimentaires (Janss, 2000, Pedersen & Poulsen, 1991, Winkelman, 1985). Les oiseaux semblent toutefois capables de percevoir si les éoliennes sont en fonctionnement et de réagir en conséquence (Albouy *et al.*, 1997), bien que certaines espèces apparaissent moins aptes à prendre en compte la présence des éoliennes lorsqu'ils sont concentrés sur une proie (cas notamment des vautours et des milans

qui ne nichent pas près du parc). La sensibilité varie néanmoins d'une espèce à l'autre suivant son mode de vie et sa façon de percevoir un parc éolien dans son environnement. Les espèces les plus sensibles aux collisions sont souvent aussi celles qui sont les moins farouches. Inversement, les espèces les plus sensibles

au risque d'évitement ou aux effets « barrière », sont aussi les moins sensibles au risque de collision. Les rapaces et les migrateurs nocturnes sont généralement

Figure 1 : Roitelet à Triple bandeau, espèce la plus impactée en France concernant la mortalité par collision avec les pales d'éoliennes, (Sens Of Life 2020).


considérés comme les plus exposés au risque de collision avec les éoliennes (Curry & Kerlinger, 1998; Hill *et al.*, 2014). Les collisions peuvent être plus fréquentes la nuit, les migrateurs étant attirés par les lumières des éoliennes, ou par mauvais temps, lorsqu'ils sont obligés de voler à faible hauteur. Cependant, l'utilisation de lumière rouge n'a pas d'impact sur le taux de collision des migrateurs nocturnes (Kerlinger *et al.*, 2010).

Durant une journée de migration typique, l'aube et au crépuscule sont des périodes durant lesquelles les oiseaux risquent d'entrer en collision avec les structures des parcs

éoliens, car leur altitude varie beaucoup (Richardson, 1998 ; Langston & Pullan, 2003). Le degré de sensibilité générale de l'avifaune migratrice est donné ci-dessous :

- De novembre à janvier : sensibilité très faible à nulle,
- En février : sensibilité faible à moyenne,
- De mars à avril : sensibilité moyenne,
- En mai : sensibilité faible à moyenne,
- De juin à juillet : sensibilité faible,
- D'août à octobre : sensibilité forte en raison des effectifs plus importants.

Une étude de corrélation (Whitfield & Madders, 2006), entre les comportements de vols à risques et la mortalité observée sur 13 parcs éoliens du nord de l'Espagne pendant 3 ans (Lekuona *et al.*, 2006) permet une appréciation comparative des sensibilités au risque de collision pour les rapaces diurnes. Le graphique suivant apporte une vision synthétique des résultats, que les suivis de mortalité ne confortent cependant pas toujours.

Graphique 2 : Corrélation entre le nombre de rapaces avec un comportement à risque et la mortalité, pendant 3 ans sur 13 parcs éoliens au nord de l'Espagne (Lekuona & Ursùa 2006).

q

Pour pallier le risque de collision des oiseaux sur les pales d'éoliennes, une étude menée par des chercheurs du Norwegian Institute for Nature research (NINA) a été menée entre 2006 et 2016, sur un parc éolien de l'archipel de Smøla en Norvège. Sur les 68 turbines en place sur le site, 4 ont eu une de leur pale peinte en noir, et les résultats des 9500 suivis réalisés durant les 10 années ont montré que ces quatre éoliennes affichaient un taux de mortalité réduit de 70% par rapport aux autres éoliennes du parc. En effet, une pale peinte en noir permettrait à l'éolienne d'être beaucoup mieux visible et plus facilement détectable par un oiseau en vol. On notera qu'il s'agit d'extrapolations à partir de peu d'oiseaux retrouvés morts et peu d'éoliennes expérimentales, et que cette étude concerne principalement les rapaces et notamment le Pygargue à queue blanche. Cette solution semble prometteuse et devrait être développée sur d'autres parcs afin d'évaluer son efficacité avec plus de précisions (May et al., 2020).

Figure 2 : éolienne avec une pale peinte en noire.

La collision des oiseaux avec les pales est l'impact le plus couramment cité lorsque l'on évoque l'énergie éolienne (American Wind Wildlife Institute, 2016). Il s'agit, en effet, de l'impact le plus facile à constater ; pour autant, il n'est pas certain qu'il soit le plus préjudiciable à la bonne conservation des populations d'oiseaux. Le dérangement des espèces nicheuses en phase d'exploitation a probablement un impact plus néfaste sur les espèces les plus patrimoniales, en particulier celles à maturité lente et à faible productivité annuelle (Gaultier et al., 2019).

III.1.2. Perte d'habitat

La bibliographie révèle des effets variables sur la perte d'habitat de l'avifaune avant et après l'implantation des parcs éoliens (Schuster *et al.*, 2015). Les effets positifs découlent d'une modification d'habitat qui pourrait améliorer la qualité du milieu pour certaines espèces et les attirer (Pearce-Higgins et al., 2012) ; (Shaffer & Buhl, 2016) et les négatifs, les plus communs, sont souvent liés à un dérangement provoquant un déplacement (Osborn *et al.*, 1998 ; Leddy *et al.*, 1999 ; Smith & Dwyer, 2016).

Il s'agit principalement de destruction ou d'altération d'habitats naturels ou d'habitats d'espèces, et de destruction de stations végétales. Ils ne se distinguent pas sensiblement des effets des autres types d'aménagements et d'infrastructures mais il faut toutefois prêter une attention particulière au fait que les parcs sont installés sans connexion avec le tissu urbanisé ou industrialisé, dans les milieux agricoles ou naturels et que de ce fait les perturbations sur les milieux ou sur les espèces peuvent être plus importants que d'autres types d'aménagements et d'infrastructures qui s'implantent dans des zones où l'état de la biodiversité peut être davantage dégradé (Perret, 2017).

Les oiseaux friands d'espaces ouverts évitent les structures verticales telles que les éoliennes. A proximité de celles-ci, ils se sentent souvent dérangés. Ces situations de stress chez les hôtes hivernants ou les migrateurs en escale peuvent générer un affaiblissement physique, qui réduit leurs chances de survie. Les oiseaux nicheurs n'ont en général qu'un taux de reproduction médiocre en cas de stress, ce qui peut avoir pour effet que les populations locales diminuent ou même disparaissent (Vogelwarte, 2016). Les éoliennes peuvent être assimilées par certains oiseaux comme reposoirs de rapaces (Kreuziger, 2008). D'autres espèces sont dérangées par le bruit des machines ou des travaux de construction (Larsen & Madsen, 2000 ; Garvin *et al.*, 2011 ; Johnston *et al.*, 2014).

La corrélation positive entre la hauteur des éoliennes et la distance d'évitement est moins importante pour les oiseaux nicheurs (Hötker *et al.*, 2006). En effet, plusieurs études soulignent la capacité d'adaptation des espèces à la présence des éoliennes (Percival, 1998 ; Guyonne & Clave, 2000 ; Kingsley & Whittam, 2001 ; James & Coady, 2004), avec une diminution progressive de la distance d'éloignement.

L'incidence critique de nombreuses activités humaines (dont un projet éolien fait partie) sur les oiseaux en période de nidification ou de migration est le risque de modifications comportementales à un moment particulièrement vulnérable du cycle biologique des oiseaux (vulnérabilité des couvées et des jeunes, forte activité des parents qui peut se traduire par l'abandon de la phase de nidification, voire de l'habitat, abandon des zones de halte migratoire) (Schuster et al., 2015 ; Smith & Dwyer, 2016).

Le risque de modification comportementale pourra avoir un caractère soit temporaire, lié aux dérangements occasionnés par les travaux d'installation des éoliennes, soit permanent, directement lié au fonctionnement des éoliennes. Les aménagements associés à la construction des parcs comme la création de routes d'accès peuvent également générer une perte d'habitat (Larsen & Madsen, 2000).

Avant la ponte, ces modifications de comportement peuvent varier entre une modification de la répartition du site entre les individus (incidence patrimoniale faible), et un abandon du nid, voire du site, par l'espèce (incidence patrimoniale forte). Pour certaines espèces reconnues comme très sensibles ou remarquables à l'échelle européenne, nationale ou régionale, l'abandon d'un territoire nuptial peut porter directement atteinte à la dynamique des populations, et indirectement à la pérennité de l'espèce (Smith & Dwyer, 2016). A cet égard, les rapaces sont particulièrement sensibles au début de la période de nidification (Gensbol, 2004).

Mais c'est plutôt après la ponte que la vulnérabilité de l'espèce est la plus marquée (activité fortement consommatrice d'énergie pour les parents et fragilité des œufs et des jeunes). Si les travaux d'implantation des éoliennes interviennent alors que la nidification est commencée, le risque le plus important est l'abandon des œufs ou des jeunes par les parents. Les chances d'un remplacement de la nichée abandonnée sont alors très réduites, d'autant plus que la nichée initiale était avancée (stress et fatigue des parents, intensification progressive des contraintes climatiques, diminution des ressources trophiques).

En ce qui concerne la phase d'exploitation des éoliennes, son impact résultera du rapport entre les implantations précises des machines et l'occupation du site par les oiseaux en comportement nuptial (défense du territoire nuptial, parade nuptiale, recherche de matériaux pour la construction des nids, recherche de nourriture...). Des modifications de comportement peuvent également avoir lieu. Là encore, pour les espèces les plus sensibles, une simple modification de comportement après la ponte, voire un abandon des jeunes, peut porter directement atteinte à la dynamique des populations de l'espèce en question et indirectement à sa pérennité.

Le suivi par GPS d'un couple d'aigle royal a permis d'étudier leur comportement suite à l'implantation de plusieurs parcs éoliens sur leur domaine et a permis de conclure que : bien qu'il soit difficile de généraliser à partir du suivi d'un seul couple, cet exemple montre que l'installation de trois parcs éoliens sur un territoire d'aigle a un impact significatif sur l'organisation de ses déplacements et sur le choix de ses zones de chasses. Globalement, la construction de parcs éoliens génère une perte d'habitats pour les aigles et perturbe leurs déplacements d'une zone à l'autre (Itty & Duriez, 2017). Il serait intéressant d'étudier si la mise en place de mesures de compensation comme les placettes d'alimentation ou les garennes à lapin à l'extérieur des zones d'implantation des parcs n'ont pas également eu un impact sur la modification de l'aire vitale de l'aigle royal. Une étude similaire avait été menée par la LPO Aude de 1998 à 2007 et avait également abouti aux mêmes conclusions de pertes d'habitat pour l'aigle royal, dans une

Figure 3 : Aigle royal. CCO domaine public.

autre région de France (Riols-Loyrette, 2015). Cette perte d'habitat fonctionnel a également été constatée pour des Milans noirs suite à l'implantation d'éoliennes au Portugal (Marques *et al.*, 2020)

L'éloignement des zones de reproduction est donc recommandé pour les espèces les plus sensibles et qui revêtent un caractère patrimonial marqué. L'intérêt de cette mesure consiste à éviter de créer des situations à risque au sein des zones les plus fréquentées entre zones de reproduction et zones d'alimentation à une période cruciale du cycle biologique des oiseaux, mais aussi parfois pour des raisons de risques directs de dérangement au nid (en période de travaux et en phase d'exploitation).

La littérature existante sur les autres impacts des parcs éoliens souligne les effets indirects sur le succès reproducteur, la survie des individus ou encore les interférences dans la communication entre individus à cause du bruit des machines (Smith & Dwyer, 2016).

III.1.3. Effet barrière

L'effet barrière correspond à la modification du comportement de vol des oiseaux pour éviter un obstacle, et se matérialise par différentes réactions : déviation de la trajectoire dans l'axe horizontal (Winkelman, 1985 ; ADEME, 1999 ; Curry & Kerlinger, 1998 ; Dirksen *et al.*, 2000 ; Percival, 2001), dans l'axe vertical ou bien franchissement entre les obstacles.

Le taux de réaction est proportionnellement plus important pour les éoliennes érigées de façon perpendiculaire à l'axe migratoire (G. D. Johnson et al., 2003) car elles constituent un barrage que les oiseaux doivent franchir. La position des parcs par rapport aux axes migratoires (perpendiculaire ou parallèle par exemple) est donc un facteur important (Larsen & Madsen, 2000 ; Albouy *et al.*, 2001). Les caractéristiques météorologiques (plafond nuageux bas, nappes de brouillards persistants, vent de face) peuvent conduire à des situations plus risquées.

L'impact dépend des espèces concernées, de la hauteur du vol, de la distance aux éoliennes, de l'heure de la journée, de la force et de la direction du vent, ces réactions nécessitent une dépense d'énergie supplémentaire qui vient s'ajouter aux multiples efforts et risques rencontrés lors des voyages migratoires.

Des évitements fréquents ont été observés chez les canards et les oies (Larsen & Madsen, 2000 ; Loesch *et al.*, 2013), un peu moins chez les échassiers et les grives, dont certaines migrent la nuit, et les corvidés (Dooling & Lohr, 2000 ; Winkelman, 1985).

Il faut considérer les risques de collision et d'effarouchement comme les deux faces d'une même pièce. Les oiseaux qui ne montrent pas de réaction d'évitement par rapport aux éoliennes seront souvent plus sujets aux collisions que ceux qui sont effarouchés. Les grues cendrées, par exemple, peuvent être considérées comme sensibles à l'effarouchement dans le sens où elles ont tendance à contourner les parcs (le plus souvent bien en amont et sans montrer de réaction vive). De fait, aucun cadavre de grue cendrée n'a, à ce jour, été répertorié en France (Marx, 2017) et seuls 25 cadavres ont été recensés en Europe (Dürr, 2020). Cependant, cette faible mortalité constatée résulte en partie du faible nombre d'éoliennes implantées jusqu'ici sur le couloir de migration ou à proximité des sites d'hivernage des Grues cendrées et du faible nombre de rapports de suivis de mortalité disponibles. Le coût engendré par le contournement des parcs éoliens reste un domaine de recherche à explorer (Gaultier et al., 2019). Les cygnes en migration semblent également sensibles à l'effet barrière puisqu'ils contournent les sites d'implantation (Moriguchi et al., 2019). Le nombre de collisions est supérieur aux extrémités des alignements d'éoliennes (Anderson et al., 2001; Cade, 1994; Thelander & Rugge, 2000). Les distances de réaction varient de 300 à 500 mètres des éoliennes pour la majorité des migrateurs diurnes (contre 20 mètres pour les migrateurs nocturnes) (Albouy et al., 1997 ; Winkelman, 1994). Des effets indirects cumulatifs peuvent être envisagés lorsqu'une modification de la trajectoire initiale implique de nouveaux obstacles (lignes électriques à haute tension par exemple).

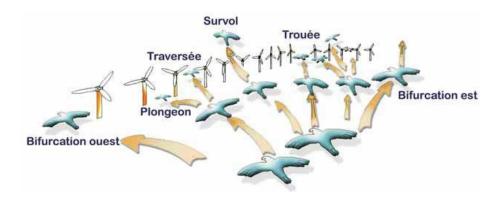


Figure 4 : Stratégie de franchissement d'un parc éolien sur le littoral audois (source : LPO Aude, 2001)

L'impact doit être évalué à la fois au cours des migrations prénuptiales et postnuptiales puisqu'une même espèce n'utilise pas forcément le même axe migratoire au printemps et à l'automne. Néanmoins, le risque peut apparaître plus important pour les migrations postnuptiales, puisqu'il s'agit des premiers mouvements migratoires pour les jeunes de l'année, plus fragiles et plus exposés aux dangers divers de la migration. Le flux migratoire postnuptial est également numériquement plus important. Il semblerait que les vols postnuptiaux s'effectuent généralement à plus faible hauteur qu'en période prénuptiale (tendance mise en évidence par le biais de suivis radar, selon Greet Ingénierie, 2006).

III.2.Sensibilité des chiroptères

III.2.1. Généralités

Les premiers cas de mortalité de chiroptères provoqués par des éoliennes ont été décrits au début des années 70 (Hall & Richards, 1972). Cependant, il a fallu attendre le milieu des années 1990 pour voir apparaître les premières études consacrées à l'impact des parcs éoliens sur les chauves-souris. Elles ont été menées aux Etats-Unis, principalement dans le Minnesota, l'Oregon et le Wyoming (Johnson *et al.*, 2003; Osborn *et al.*, 1996 ; Puzen, 2002).

En Europe, des études sur le sujet ont vu le jour à la suite des protocoles de suivi sur la mortalité des oiseaux, qui ont révélé des cas de collision avec les chauves-souris. Ces études se sont déroulées principalement en Allemagne (travaux de Bach, 2001; Bach et al., 1999; Brinkmann et al., 2006; Dürr, 2002) et en Espagne (Alcalde, 2003; Lekuona, 2001). L'étude de cette problématique a été plus tardive en France (Beucher et al., 2011; Cornut & Vincent, 2010; Dulac, 2008; Lagrange et al., 2009; Rico et al., 2012; Rico & Lagrange, 2011; Allouche et al., 2010). Depuis, ces suivis de mortalité se sont répandus en Europe. Dans sa dernière publication « Guidelines for consideration of bats in wind farm projects, Revision 2014 » et ses annexes, le groupe de travail EUROBATS propose une compilation aussi exhaustive que possible de ces travaux à travers l'Europe.

La compilation chiffrée des données disponibles est régulièrement mise à jour, au niveau européen, par T. Dürr. Certaines études montrent une mortalité plus importante sur les chiroptères que sur les oiseaux (Smallwood, 2013): aux Etats-Unis, la mortalité annuelle évaluée sous les éoliennes serait de 888 000 chauves-souris pour 573 000 oiseaux. Cette sensibilité particulière des chiroptères à l'éolien pourrait être due à plusieurs phénomènes:

Une possible attraction des chauves-souris par les éoliennes, notamment par les insectes concentrés autour des parties chaudes des éoliennes (Bennett et al., 2017; Foo et al., 2017). Les pics d'activité des chiroptères sont liés à l'essaimage des insectes: un pic à la fin du printemps - début été (coïncide avec la période de mise bas des chiroptères) et un autre fin été - début automne (migration, émancipation des jeunes chiroptères) (Beucher et al., 2017);

- Elles pourraient rechercher des gîtes dans les éoliennes en les confondant avec des grands arbres (Bennett & Hale, 2014; Cryan, 2008; Gaultier et al., 2020; Kunz et al., 2007), ou encore en voulant s'en servir comme sites de reproduction (Cryan, 2008; Gaultier et al., 2020) ou simplement explorer les éoliennes par curiosité (Cryan & Barclay, 2009);
- Un problème de détection des pales en mouvement : les extrémités de pale se déplacent à des vitesses linéaires importantes (plus de 250 km.h⁻¹), tout en présentant une faible surface réfléchissante pour les ultrasons utilisés par le système d'écholocation des chiroptères. Cette contrainte est augmentée par la génération d'un effet Doppler important : sur une cible arrivant à 250 km.h⁻¹, l'écho revient vers l'animal avec un décalage en fréquence de 20 kHz. Il entraine obligatoirement une erreur de mesure (la chauve-souris perçoit la cible plus éloignée qu'elle ne l'est en réalité). Le signal pourrait aussi simplement être ininterprétable ou inaudible pour l'animal qui n'a que quelques fractions de seconde pour réagir.

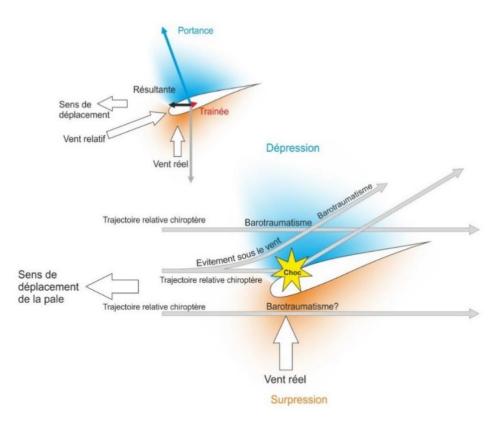


Figure 5 : Description du phénomène de barotraumatisme.

Le phénomène de barotraumatisme (Figure 5) décrit par Baerwald *et al.* (2008) et Seiche (2007) puis par Baerwald & Barclay (2009) résulterait du passage de la pale à proximité de la chauve-souris. L'animal pourrait donc être impacté dans certaines conditions même s'il a évité la pale. En effet, à proximité immédiate de l'extrados des pales en mouvement, les chauves-souris traversent une zone de dépression brutale. Cette variation de pression entraine la rupture des vaisseaux capillaires (pulmonaires essentiellement) et provoque une hémorragie létale sans qu'il n'y ait eu de contact avec la pale. Ce phénomène explique que la plupart des cadavres récupérés et examinés ne présentent aucune lésion externe. Horn *et al.* (2008) montrent que les risques sont plus importants lorsque la vitesse de rotation des pales n'est pas très élevée, ce qui se produit par vent faible. La mort par barotraumatisme n'étant pas directe, il est possible que l'individu soit encore capable de voler quelques temps après le traumatisme et donc que le cadavre ne soit pas retrouvé sous l'éolienne (Gaultier *et al.*, 2020).

La sensibilité des chiroptères vis-à-vis des éoliennes est variable en fonction de :

- L'écologie des espèces concernées, avec une sensibilité plus importante pour des espèces dites de haut-vol (> 40 m) appartenant principalement aux groupes des Sérotules (Epistecus-Nyctalus) et des Pipistrelles (Heitz & Jung, 2016); en Europe, les espèces les plus touchées seraient la Pipistrelle commune (*Pipistrellus pipistrellus*), la Pipistrelle de Nathusius (*Pipistrellus nathusii*) et la Noctule commune (*Nyctalus noctula*) (Gaultier et al., 2020). Au contraire, les Rhinolophes et le genre *Myotis* chassent plutôt près du sol ou directement dans la végétation ce qui réduit les risques de collision (Gaultier et al., 2020; Rydell et al., 2010a);
- Du sexe, par exemple, les femelles de Noctule commune auraient un territoire de chasse plus grand et exploreraient plus de nouveaux territoires que les mâles, elle n'hésiteraient donc pas à chasser à proximité des éoliennes (Roeleke *et al.*, 2016);
- Du milieu d'implantation des éoliennes avec des mortalités plus importantes en milieu forestier, sur des crêtes, le long de grands cours d'eau ou des zones littorales, moins importantes en milieu agricoles diversifiées et minimales sur des plaines agricoles (Rydell et al., 2010b);
- De la saison, avec des pics de mortalité en fin d'été et début de l'automne, période de dispersion des jeunes et de migration (Heitz & Jung, 2016; Marx, 2017);
- De l'heure, avec une période d'activité maximale en début de nuit (Haguart et al., 2013);
- Des conditions climatiques, avec une sensibilité maximale les nuits sans précipitations, faible vent souvent au-dessous de 6,5 m.s⁻¹ et avec hautes températures (Beucher, 2020 ; Joiris, 2012). Pour les espèces de lisières comme les Pipistrelles, les pics d'activité ont lieu pour des vitesses de vent d'environ 2 m.s⁻¹ et des températures comprises entre 10 et 15°C (Beucher *et al.*, 2017). Les espèces comme les Noctules présentent un pic d'activité vers 5 m.s⁻¹ (Beucher *et al.*, 2017). Nous avons étudié la différence entre activité et mortalité des chiroptères grâce à des caméras thermiques (Rico & Lagrange, 2015) : la forte activité a lieu pour des vitesses de vent faibles, lorsque l'éolienne ne tourne pas, il n'y a donc pas de mortalité, mais lorsque le vent atteint 5 à 6 m.s⁻¹, l'éolienne commence à tourner alors qu'il y a encore de l'activité chiroptérologique, ce qui induit donc des cas de mortalité ;
- Des caractéristiques des éoliennes (hauteur du mât, diamètre du rotor, longueur des pales, vitesse de rotation), avec une sensibilité maximale pour les éoliennes de moins de 30 mètres de garde au sol et un grand diamètre de rotor qui implique une plus grande surface balayée (Heitz & Jung, 2016). Plus les éoliennes sont larges et hautes, plus le risque de mortalité sera élevé (Gaultier et al., 2020; Rydell et al., 2010a). La distance entre chaque éolienne va également jouer un rôle : des turbines plus proches les unes des autres peuvent réduire l'effet d'évitement du parc éolien et l'emprise du parc dans l'environnement (Barré, 2018), mais diminuent également la possibilité de déplacement entre chaque éolienne.

III.2.2. Mortalité directe et mortalité indirecte

a) Mortalité directe

La mortalité directe, qu'elle soit produite par barotraumatisme ou collision, génère une mortalité qui est de mieux en mieux documentée. Il apparaît que toutes les espèces ne sont pas impactées de la même manière par ce phénomène. Le comportement et l'écologie des animaux influenceraient fortement leur sensibilité à l'éolien. Ainsi, les chauves-souris chassant en plein ciel (espèces de haut vol) ou réalisant des migrations, seraient beaucoup plus impactées que les espèces sédentaires glanant leur nourriture au sol ou dans la canopée (Roemer et al., 2017). En Europe, le Tableau 26 compilé par Tobias Dürr permet de constater le nombre de cas de mortalité, relevé par espèce et par pays. En croisant ces données avec la vulnérabilité des espèces, il est possible de définir la sensibilité de chaque espèce à l'éolien (Tableau 3).

Sensibilité élevée	Sensibilité moyenne	Sensibilité faible
Noctules spp.	Sérotines spp.	Murins spp.
Pipistrelles spp.	Barbastelle d'Europe	Oreillards spp.
Vespertilion bicolore		Rhinolophes spp.
Vespère de Savi		
Minioptère de Schreibers		
Molosse de Cestoni		

Tableau 3 : Vulnérabilité à l'éolien par espèce (Groupe Chiroptères de la SFEPM, 2016)

b) Mortalité indirecte

La mortalité directe n'est pas le seul facteur affectant les chauves-souris, celles-ci peuvent également être victime de perte d'habitat ou du dérangement résultant de l'implantation et du fonctionnement d'un parc éolien. Les effets indirects de l'aménagement et du fonctionnement des parcs éoliens peuvent induire un impact supplémentaire sur les populations de chauves-souris (individus, habitats et proies), qu'elles soient résidentes ou migratrices. Ces perturbations peuvent être de plusieurs natures :

- Dérangement ou barrière sur les voies de migration et les voies de transit locales,
- Dégradations, dérangement ou destruction des habitats de chasse,
- Dégradations, dérangement ou destruction des gîtes (plus probable pour des éoliennes en milieu forestier ou près de bâtiments),
- Désorientation des chauves-souris en vol par les ultrasons émis par les éoliennes.

L'activité des chiroptères serait plus faible au niveau des parcelles où une éolienne y était implantée qu'au niveau des sites témoins (Millon *et al.*, 2015, 2018). Cette observation rejoint les observations faites sur l'activité des chauves-souris en France qui ont montré qu'après installation d'un parc éolien, l'activité des chauves-souris (toutes espèces confondues) est décroissante le long des haies dans un rayon de 1 km autour des éoliennes (Barré, 2018). Les Pipistrelles communes (*Pipistrellus pipistrellus*) et les Pipistrelles pygmées (*Pipistrellus pygmaeus*) présenteraient une activité plus faible à moins de 100 m des éoliennes (Minderman *et al.*, 2017).

Les espèces du genre *Myotis* utilisent beaucoup les milieux forestiers pour se déplacer et chercher de la nourriture, elles sont donc les plus impactées par l'effet barrière que représente un parc éolien, contrairement aux espèces qui utilisent les milieux ouverts pour se déplacer comme la Pipistrelle de Nathusius (Gaultier *et al.*, 2020).

IV. Suivi de la mortalité sur le parc éolien de Croquettes

Cette étude est proposée dans le but d'optimiser les connaissances quant à l'impact du parc éolien les Croquettes sur les chauves-souris et les oiseaux. Elle a pour objectif de caractériser la mortalité induite par le fonctionnement des éoliennes étudiées sur les chiroptères et les oiseaux. Un protocole éprouvé et rationnalisé est mis en place pour évaluer au mieux le nombre de cadavres, en prenant en compte les biais inhérents à ce type de démarche.

IV.1. Protocole

Le suivi de la mortalité est basé sur un protocole développé par l'équipe d'Arnett (Casselman Wind Project, 2008-2010), puis adapté et appliqué en Europe par des membres de notre équipe sur le parc éolien de Bouin (Lagrange *et al.*, 2009). Il est conforme au protocole ministériel publié en 2018 et se déroule sur 20 prospections au minimum, à débuter dès le lever du jour, réparties entre les semaines 20 et 43 (mi-mai à octobre). Les suivis de mortalité ont été effectués sur le parc éolien des Croquettes selon le protocole, entre le 18 mai et le 05 octobre 2020.

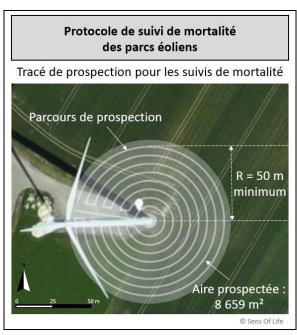


Figure 6 : Représentation du transect de prospection réalisé pour la recherche de cadavres sous une éolienne.

Ce protocole consiste à prospecter la surface sous l'éolienne en se guidant à l'aide d'une corde qui est raccourcie à chaque retour sur la piste d'accès à l'éolienne. Au premier passage, toute la longueur de la corde (50 mètres) fixée à l'éolienne est déroulée. L'observateur part de la plateforme en parcourant un cercle autour de l'éolienne et en recherchant les cadavres d'oiseaux et de chauves-souris de chaque côté de son passage (2,5 mètres de chaque côté). De retour sur la piste d'accès, 5 mètres de corde sont rembobinés et l'observateur décrit, en sens inverse, un autre cercle autour de l'éolienne. L'opération est répétée jusqu'à ce que l'observateur se trouve au pied de l'éolienne. Ainsi, pour chaque éolienne, l'observateur parcourt 10 cercles (50, 45, 40, 35, 30, 25, 20, 15, 10 et 5 mètres) soit 1728 mètres de transect, à une vitesse approximative de 3 km/h. L'opération nécessite 35 minutes de parcours, auxquelles s'ajoutent 10 minutes de relevés de cadavres. La surface prospectée est de 8659 m² ($S = \pi.R^2$, avec R = 52,5 mètres, dont 50 mètres de corde et 2,5 mètres de prospection). Le rayon de prospection choisi sera adapté à la longueur des pales (Figure 6).

Le nombre de cadavres retrouvés sous les éoliennes est directement lié au nombre de prospections réalisées (Marx, 2016) et leur détectabilité dépend de (Marx, 2017) :

- La nature des individus (taille et poids);
- Du protocole de recherche implémenté, avec une détectabilité maximale avec des prospections audelà de 50 mètres de rayon ;
- De la visibilité du terrain prospecté (couverture végétale, relief...);
- De la durée des suivis (moyenne de 25 semaines/an en France);
- De la fréquence de prospection (taux de prédation des cadavres) ;
- De la longueur des pales (cadavres au-delà du rayon de recherche).

L'identification des chauves-souris a été réalisée par analyse morphologique de la dentition des cadavres, après avoir été conservés congelés (Figure 7). L'ouvrage d'Arthur & Lemaire, 2009 a été utilisé comme référence.

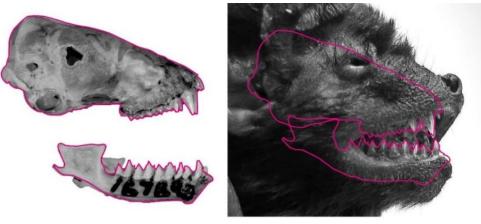


Figure 7 : Comparaison de la dentition pour identification de la Noctule de Leisler.

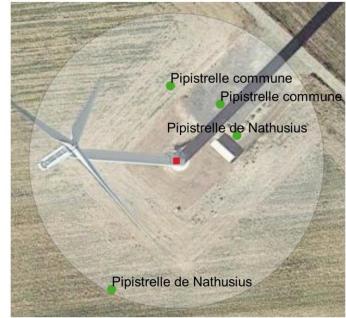
L'identification des oiseaux a été réalisée à partir du plumage, de la taille du squelette et de la forme des pattes et du bec, en se référant aux ouvrages de Svensson *et al.*, 2015, et de Cieślak et Dul, 2006 et aux sites Internet :

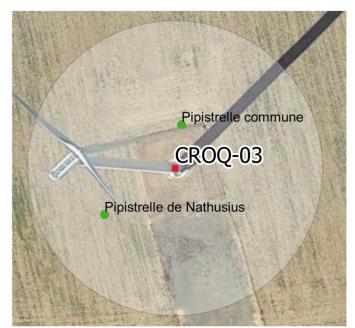
- http://skullsite.w3basix.nl/search/index.cfm
- https://sketchfab.com/laboratorinatura/collections/aves?cursor=48

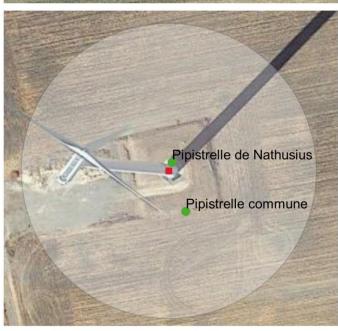
IV.2. Mortalité brute constatée au pied des éoliennes

Le suivi de mortalité du parc éolien de Croquettes est basé sur un passage hebdomadaire entre mai et octobre, soit une pression d'échantillonnage relativement importante. Les éoliennes ont été prospectées au cours de 20 passages réalisés aux dates listées dans le Tableau 4. Au total, 10 cadavres de chiroptères et 1 cadavre d'oiseau ont été retrouvés lors des suivis de mortalité. L'ensemble des individus découverts sont morts par barotraumatisme et/ou par collision avec les pales, soit 100 % des individus dont la mort est imputable aux éoliennes. Le Tableau 4 indique les caractéristiques générales des collisions constatées sur le parc éolien de Croquettes en 2020. Toutes les fiches d'identification des cadavres sont disponibles en annexe 2. La Carte 2 permet la visualisation de la répartition spatiale de ces cadavres sous les éoliennes du parc.

Date	Espèce	Nom latin	Туре	Statut de conservation	Sexe	Age	Coordonnées GPS	Eolienne proche	Distance au mât	Orientation par rapport au mât
18/05/2020	Pipistrelle de Nathusius	Pipistrellus nathusii	Chauve-souris	NT	Mâle	Adulte	47.1533549 ; 2.174025	CROQ-01	48 m	Sud-Ouest
15/06/2020	Pipistrelle commune	Pipistrellus pipistrellus	Chauve-souris	NT	-	Adulte	47.1539229 ; 2.1745141	CROQ-01	22 m	Nord-Est
15/06/2020	Pipistrelle commune	Pipistrellus pipistrellus	Chauve-souris	NT	-	Adulte	47.1457759 ; 2.1762281	CROQ-03	10 m	Nord-Est
15/06/2020	Pipistrelle de Nathusius	Pipistrellus nathusii	Chauve-souris	NT	-	Adulte	47.1417092 ; 2.1789703	CROQ-04	0 m	Nord-Est
19/06/2020	Pipistrelle de Nathusius	Pipistrellus nathusii	Chauve-souris	NT	-	Adulte	47.1538267 ; 2.1745896	CROQ-01	21 m	Nord-Est
03/07/2020	Pipistrelle commune	Pipistrellus pipistrellus	Chauve-souris	NT	-	Adulte	47.1387351 ; 2.1815851	CROQ-05	12 m	Nord-Est
27/07/2020	Faucon crécerelle	Falco tinnunculus	Rapace	NT	-	ı	47.1495942 ; 2.1747797	CROQ-02	40 m	Sud-Ouest
21/08/2020	Pipistrelle commune	Pipistrellus pipistrellus	Chauve-souris	NT	-	Adulte	47.153979 ; 2.1742895	CROQ-01	26 m	Nord
07/09/2020	Pipistrelle de Nathusius	Pipistrellus nathusii	Chauve-souris	NT	-	Adulte	47.145500 ; 2.175881	CROQ-03	31 m	Sud-Ouest
11/09/2020	Pipistrelle de Nathusius	Pipistrellus nathusii	Chauve-souris	NT	-	Adulte	47.149912 ; 2.175034	CROQ-02	8 m	Sud-Est
11/09/2020	Pipistrelle commune	Pipistrellus pipistrellus	Chauve-souris	NT	-	Adulte	47.141559 ; 2.179032	CROQ-04	13 m	Sud


Tableau 4 : Liste des oiseaux et des chauves-souris retrouvés lors des suivis de mortalité sur le parc éolien Les Croquettes, entre mai et octobre 2020.

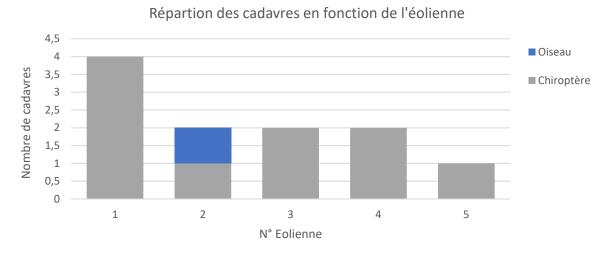



Localisation des cadavres retrouvés Parc éolien Les Croquettes Cher (18)

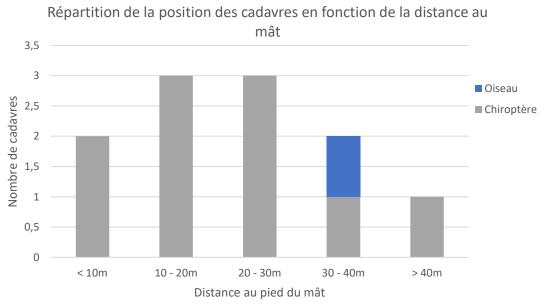
<u>Légende :</u>

- Eolienne
- Cadavre de chiroptère
- Cadavre d'oiseau

0 20 40 m

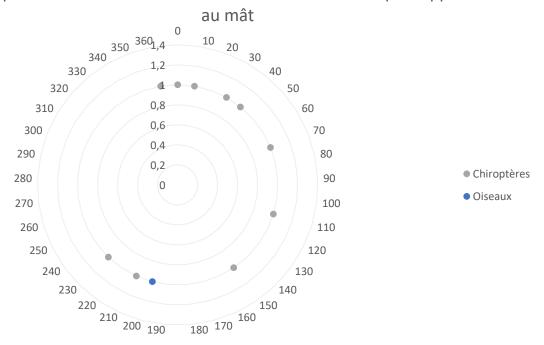

Sens Of Life, 2020. Fond de carte : Google satellite.

Carte 2 : Localisation des cadavres, trouvés entre mai et octobre 2020., sous les éoliennes du parc éolien de Croquettes.


IV.2.1. Analyse spatiale des collisions sur le parc éolien de Croquettes

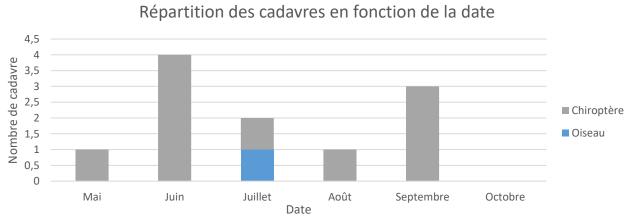
On constate avec le Graphique 3 qu'au moins un cadavre a été trouvé sous chaque éolienne, avec au maximum de 4 cadavres trouvés sous l'éolienne CROQ-01 (4 chauves-souris). Deux cadavres ont été retrouvés sous les éoliennes CROQ-02, CROQ-03 et CROQ-04. Un seul cadavre d'oiseau a été retrouvé parmi les 11 cadavres, sous l'éolienne CROQ-02. Pour les chiroptères, l'éolienne CROQ-01 (la plus au nord) est donc responsable de 40 % de la mortalité constatée, mettant peut-être en avant des voies de déplacement locaux sous-jacents. Le type de culture ne semble pas être en lien avec le nombre de cadavre trouvés.

Graphique 3 : Répartition des cadavres en fonction des éoliennes du parc éolien Les Croquettes, entre mai et octobre 2020.


En ce qui concerne la distance des cadavres au mât de l'éolienne, les cadavres semblent répartis de manière aléatoire (Graphique 4). Il apparait toutefois que la majorité des cadavres de chiroptères (60 %) ont été retrouvés entre 10 et 30 m du mât. Etant donné le faible nombre de collision d'oiseau, nous ne pouvons conclure d'une éventuelle corrélation entre le groupe d'espèces (chiroptère ou oiseau) et la distance du cadavre au mât.

Graphique 4 : Répartition de la position des cadavres en fonction de la distance au mât, sur le parc éolien Les Croquettes, entre mai et octobre 2020.

Enfin, la répartition des cadavres a été analysée en fonction de leur orientation par rapport au mât de l'éolienne la plus proche (Graphique 5). La moitié des cadavres de chiroptères a été retrouvée du côté Nord-Est (5 cadavres de chiroptères sur 10), l'autre moitié étant plutôt répartie côté Sud. Le seul cadavre d'oiseau a été retrouvé au Sud du mât (200°).


Répartition des cadavres en fonction de l'orientation par rapport

Graphique 5 : Répartition de la position des cadavres en fonction leur orientation par rapport au mât de l'éolienne la plus proche, sur le parc éolien de Croquettes, en 2020

IV.2.1. Analyse temporelle des collisions sur le parc éolien de Croquettes

Le Graphique 6 permet d'analyser la mortalité constatée sur le parc éolien de Croquettes en fonction de la période biologique. Un pic de mortalité a eu lieu la deuxième quinzaine de juin (4 cadavres de chiroptères) suivi d'un autre pic début septembre (3 cadavres de chiroptères). Le mois de septembre correspond au début de la transition automnale des chiroptères vers leurs lieux d'hivernage. La faible mortalité constatée en mai peut être expliquée du fait que les suivis de mortalité ont début seulement à partir du 18 mai 2020, conformément au protocole ministériel.

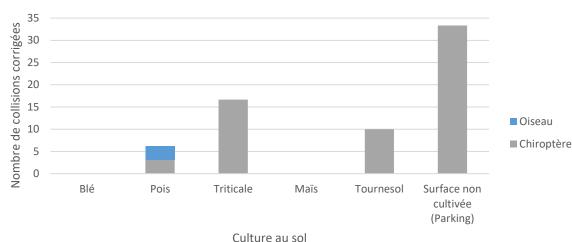
Graphique 6 : Répartition des cadavres en fonction de la date, parc éolien de Croquettes, de mai à octobre 2020

IV.2.2. Analyse météorologique des collisions sur le parc éolien de Croquettes

Les données météorologiques récoltées sur le parc éolien de Croquettes permettent d'analyser les conditions de vent et de température pouvant expliquer les mortalités constatées en 2020 (Tableau 5). Une fois la date de la collision estimée en fonction de l'avancement de la décomposition du cadavre, les moyennes de vitesses de vent et de températures ont été calculées sur 3 jours, de 21h00 à 07h00 pour les collisions de chiroptères et de 07h00 à 21h00 pour les oiseaux.

En ce qui concerne le cadavre de Faucon crécerelle retrouvé le 03/07/2020, l'état de décomposition du cadavre n'a pas permis une estimation du jour de l'impact, les conditions météorologiques n'ont donc pas été étudiées.

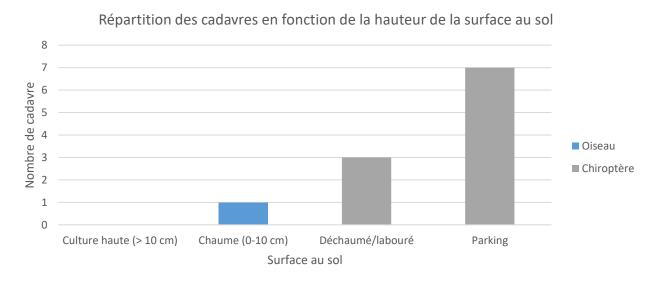
Date des collisions constatées	Vitesse moyenne du vent la nuit (m.s ⁻¹)	Moyenne des température la nuit (°C)	Vitesse maximale du vent la nuit (m.s ⁻¹)
18/05/2020	7,2	13,2	11 m.s ⁻¹ (15/05 et 16/05)
15/06/2020	6,2	15,0	11 m.s ⁻¹ (12/06 vers 5h)
19/06/2020	6,4	14,5	8,8 m.s ⁻¹ (17/06 à 23h50)
03/07/2020	5,2	17,2	8,3 m.s ⁻¹ (02/07 à 00h40)
21/08/2020	3,8	22,1	11,2 m.s ⁻¹ (21/08 à 03h40)
07/09/2020	4,3	18,4	8,4 m.s ⁻¹ (07/09 à 00h20)
11/09/2020	4,5	21,0	9 m.s ⁻¹ (10/09 à 00h00)


Tableau 5 : Caractéristiques météorologiques des trois jours précédents les collisions constatées sur le parc de Croquettes entre mai et octobre 2020

Concernant les jours précédant les dates estimées des collisions des chiroptères, les conditions météorologiques nocturnes sont caractérisées par des vitesses de vent moyennes comprises entre 3,8 et 7,2 m.s⁻¹ et des températures moyennes comprises entre 13,2 °C et 21°C, correspondant à des températures plutôt hautes et un vent plutôt faible, qui sont les conditions météorologiques les plus favorables à l'activité chiroptérologique. Les rafales de vent pouvant aller jusqu'à 11,2 m.s⁻¹ (Tableau 5) pourraient expliquer certaines collisions notamment celles aux alentours du 18/05/2020, du 15/06/2020 et du 21/08/2020. Les données concernant les précipitations n'ont pas été recueillies, toutefois, l'absence de précipitation combinée à de faibles vitesses de vent et des températures plutôt hautes pourrait expliquer une activité importante des chiroptères et ainsi accroitre le risque de collision.

IV.2.3. Analyse des collisions en fonction du milieu sur le parc éolien de Croquettes

Les cinq cultures présentes sur le parc éolien de Croquettes (Carte 3) ne sont pas équivalentes en termes de surface : les pois représentent ainsi 32 % des cultures prospectées, le parking représente 21 %, le maïs représente 16 %, le blé représente 15 %, le tournesol représente 10 % et le triticale représente 6 %. Trouver plus de cadavres dans les champs de pois ne signifie donc pas forcément qu'ils sont plus mortifères mais que la probabilité est tout simplement plus élevée par simple proportionnalité. Afin de s'affranchir de ce biais d'interprétation, le nombre de collisions a été divisé par le coefficient de surface de la culture, soit pour le parc éolien de Croquettes : 0,32 pour les pois, 0,21 pour le parking, 0,16 pour le maïs, 0,15 pour le blé, 0,10 pour le tournesol et 0,06 pour le triticale.


Nombre de collisions corrigées en fonction de la culture

Graphique 7 : Répartition des collisions en fonction de la culture, corrigées avec un coefficient surfacique, sur le parc éolien de Croquettes en 2020.

La majorité des cadavres (oiseaux et chiroptères) ont été retrouvés au niveau du parking. Ce n'est pas étonnant puisque cette surface plane dépourvue de végétation (ou à végétation rase) permet à l'observateur de réaliser le suivi quelle que soit la période de l'année et présente une visibilité élevée. Ensuite, une grande partie des cadavres de chiroptères a été retrouvé dans les cultures de triticale et le tournesol. Le seul cadavre d'oiseau a été trouvé dans une culture de pois, dont la végétation rase est propice à l'activité de chasse des rapaces. Ces différences pourraient être expliquées par le type de proies fréquentant ces cultures (insectes, micromammifères...) et le régime alimentaire des oiseaux et chauves-souris surpris par les pales durant leurs activités de chasse.

Nous avons ensuite regardé la répartition des cadavres en fonction de la hauteur de la surface au sol. Aucun cadavre n'a été trouvé dans une culture dont la hauteur est supérieure à 10 cm (faible visibilité ou pas de prospection effectuée). Tout comme la figure précédente, c'est au niveau du parking que la plupart des cadavres de chiroptères ont été retrouvés.

Graphique 8 : Répartition des cadavres en fonction de la hauteur de la surface au sol, sur le parc éolien de Croquettes en 2020.

IV.3. Occupation du sol et surface prospectée

La couverture végétale au moment des passages pour la recherche des cadavres, ainsi que la surface prospectable, sont relevées à chaque passage. La surface prospectée peut être inférieure à la surface théorique, à cause des obstacles comme des haies, des grillages... ou par un souci de préserver l'intégralité des cultures en place. Dans la mesure du possible, les dates du suivi sont programmées quand la plupart des cultures ont déjà été moissonnées. La Carte 3 montre un aperçu des zones prospectables au sein des surfaces délimitées pour la recherche de cadavres sur le parc éolien de Croquettes.

Au pied des éoliennes, la plus grande partie du sol correspond à des terres agricoles, en culture (maïs, blé, orge...) ou en prairie (fauchée ou cultivée). La couverture végétale sous les éoliennes de Croquettes étant très variable, le pourcentage de surface prospectable a été noté à chaque sortie et une moyenne a été calculée sur l'année de recherche pour estimer ce biais (Tableau 6).

Data		Surface prospectable (%) et nombre de cadavre retrouvé au sol														
Date	CROQ-01			CROQ-02			C	CROQ-03			CROQ-04			CROQ-05		
18/05/2020		1	70%		-	20%		1	20%		1	100%		-	25%	
25/05/2020		-	70%		-	20%		-	20%		1	100%		-	25%	
01/06/2020		-	70%		-	20%		-	20%			100%		-	25%	
08/06/2020		-	70%		-	20%		-	20%		-	100%		-	25%	
15/06/2020		1	20%		-	20%		1	20%		1	20%		-	25%	
19/06/2020		1	20%		-	20%		-	20%		-	20%		-	25%	
29/06/2020		-	20%		-	20%		-	20%		-	20%		-	25%	
03/07/2020	ale	-	20%		-	20%		-	20%		-	20%		1	25%	
08-09/07/2020	Tournesol et triticale	-	50%		-	20%		-	20%		-	20%		-	25%	
20-21/07/2020	et tı	-	50%	Pois	-	20%	Pois	-	20%	Maïs	-	20%	BIÉ	-	100%	
27/07/2020	los	- [50%	Pc	1	100%	Pc	-	100%	Ĕ	1	20%		-	100%	
03/08/2020	rrne	-	- 50% - 50%		-	100%		-	100%		-	20%		-	100%	
10/08/2020	Tol	-			-	100%		-	100%		1	20%		-	100%	
21/08/2020		1	50%		-	100%		-	100%		1	20%		-	100%	
01/09/2020		-	100%		-	100%		-	100%		1	20%		-	100%	
07/09/2020		-	100%		-	100%		1	100%	ļ	1	20%		-	100%	
11/09/2020		-	100%		1	100%		-	100%		1	20%		-	100%	
21/09/2020		-	100%		-	100%		-	100%		•	20%		-	100%	
29/09/2020		-	100%		-	100%		-	100%		•	20%		-	100%	
05/10/2020		-	100%		-	100%		-	100%		-	20%		-	100%	
Moyenne surface prospectée	63,00%		60,00%			60,00%			36,00%			66,25%				

Tableau 6 : Couvert végétal et surface prospectée pour chaque éolienne du parc éolien les Croquettes en 2020. Les cadavres retrouvés au sol sont représentés en orange.

IV.4. Calcul des biais

IV.4.1. Test de prédation

Les cadavres des oiseaux et chauves-souris tombés au sol sont consommés par divers prédateurs, tels que des renards, corneilles, sangliers, guêpes... Leur disparition est susceptible d'affecter l'évaluation de la mortalité induite par les éoliennes. Pour évaluer ce biais, le taux de prédation des cadavres doit être évalué, selon le protocole de suivi environnemental des parcs éoliens terrestres défini par le Ministère de la transition écologique et solidaire (DREAL, 2015; DREAL, 2018).

Ainsi, trois cadavres de cailles ont été déposés sous les éoliennes CROQ-01, CROQ-03 et CROQ-05 le 23/09/2020 et une deuxième série de test a été réalisée le 07/10/2020. Leur recherche a été menée le lendemain (J+1), puis à J+2, J+6 et J+12, donc pendant 2 semaines s'il y avait persistance. La disparition a été considérée complète au moment où l'observateur estimait que les restes ne pouvaient pas permettre de repérer les individus en dehors d'une connaissance précise de leur localisation.

A partir de ces données, différents paramètres ont été calculés :

- Le temps de séjour moyen d'un cadavre : $t_m = \frac{\sum_i^n t_i}{n}$

 t_m = temps de séjour moyen d'un cadavre

 t_i = temps de persistance d'un cadavre

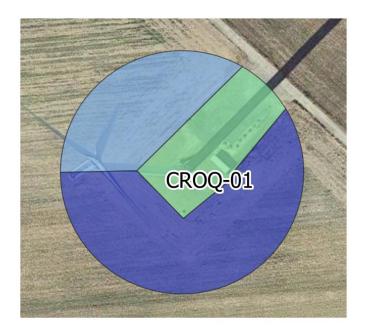
n = nombre de cadavres utilisés

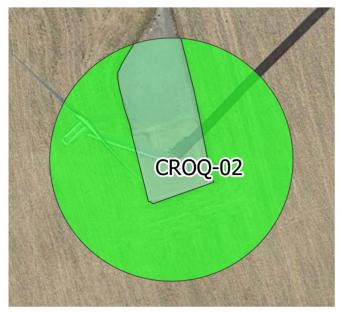
- Le taux de persistance des cadavres : $S = \frac{n_{nuit}}{n}$

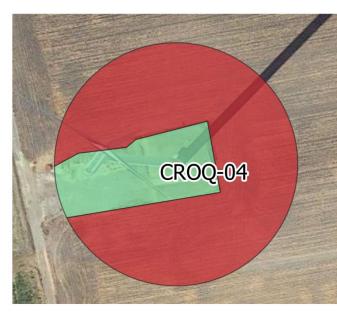
S = taux de persistance des cadavres

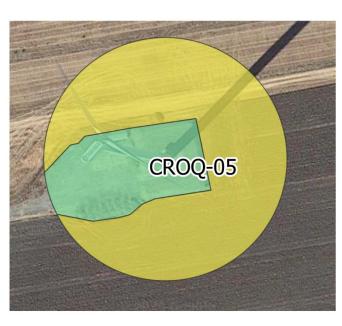
 n_{nuit} = nombre de cadavres persistant après un passage

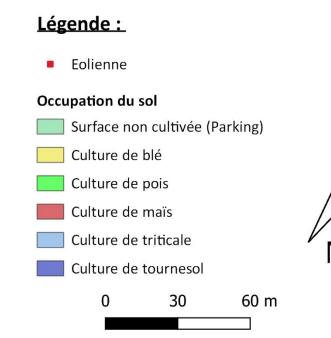
n = nombre de cadavres utilisés


Sur le parc éolien de Croquettes, le temps de séjour moyen d'un cadavre est estimé à 3,81 jours et le taux de persistance au deuxième jour est estimé à 44 %. Les résultats de ce test montrent que la prédation sur le site d'étude est importante. Etant donné que l'intervalle moyen entre deux prospections est de 7,3 jours, un oiseau ou une chauve-souris, tué durant les premières nuits suivant une recherche, aura une assez faible probabilité d'être retrouvé lors de la recherche suivante.




Occupation de la surface de recherche Parc éolien Croquettes Cher (18)





Sens Of Life, 2020. Fond de carte : Google satellite.

Carte 3 : Surfaces prospectables et types de culture, sous les 5 éoliennes du parc éolien Les Croquettes, entre mai et octobre 2020.

IV.4.2. Test du taux de détection

L'efficacité de l'observateur à retrouver des cadavres de chauves-souris et d'oiseaux au sol, parmi la végétation et divers artefacts (bouses et crottins, cailloux, fragments végétaux...), doit être testée pour évaluer le ratio entre le nombre de cadavres réellement présents et ceux qui sont effectivement retrouvés, selon le protocole de suivi environnemental des parcs éoliens terrestres défini par le Ministère de la transition écologique et solidaire (document révisé en 2018). Le choix d'utiliser des leurres ou des vrais cadavres ne semble pas influencer le test (Jones *et al.*, 2009). Cependant, l'utilisation de leurres artificiels permet de s'affranchir d'une éventuelle altération de la pression de prédation.

Un premier chargé d'étude a ainsi déposé 5 leurres d'oiseaux et 10 leurres de chauves-souris (Figure 8), soit 15 leurres au total, sous les éoliennes CROQ-01, CROQ-03 et CROQ-05 dans les zones où la prospection était possible, en variant la distance au mât de l'éolienne et la couverture végétale. Un second chargé d'études a ensuite collecté les leurres au cours des passages dédiés aux suivis de mortalité, en suivant le protocole décrit dans le début du paragraphe (Tableau 7).

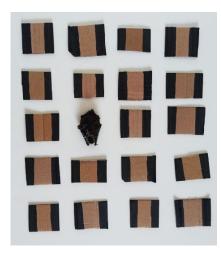


Figure 8 : Cadavre de chauve-souris parmi 19 leurres utilisés pour tester le taux de détection.

Ce test a été réalisé deux fois durant l'année 2020, le 10/08/2020 et le 29/09/2020, afin d'obtenir des résultats précis et correspondant à l'efficacité sur différentes couvertures de sol (terre, semis, terrain après récolte...). Cette approche prend en compte d'éventuelles variations de détection en fonction de la couverture du sol et du contexte sous chacune des éoliennes.

A partir de ces données, le taux de détection a été calculé à chaque passage : $f_{Ex}^t = \frac{l_{Ret} \frac{t}{Ex}}{l_{Tot} Ex}$ $f_{Ex}^t = t$ taux de détection pour le passage t sous l'éolienne Ex

 $l_{Ret} \frac{t}{F_{x}}$ = nombre de leurres retrouvés lors du passage t sous l'éolienne Ex

 $l_{Tot_{Fx}}$ = nombre total de leurres dispersés sous l'éolienne Ex

Eolienne	Leurres re (10/08/		Taux de de (10/08/		Leurres re (29/09/		Taux de d (29/09/		Taux de détection moyen		
	Oiseaux	Chiros	Oiseaux	Chiros	Oiseaux	Chiros	Oiseaux	Chiros	Oiseaux	Chiros	
CROQ-01	5	5	100 %	50 %	5	8	100 %	80 %	100 %	65 %	
CROQ-03	5	6	100 %	60 %	5	7	100 %	70 %	100 %	65 %	
CROQ-05	5	6	100 %	60 %	5	6	100 %	60 %	100 %	60 %	
Moyenne du parc			100 %	57 %	Moyenne	e du parc 100 % 70 %		100 %	63 %		

Tableau 7 : Évaluation du taux de détection de cadavres sous chaque éolienne du parc éolien de Croquettes

Sur le parc éolien de Croquettes, le taux de détection sous les éoliennes varie de 50 % à 100 %, avec une excellente détection de 100 % pour les oiseaux et de 63 % pour les chiroptères, sur l'ensemble du parc éolien.

IV.5. Estimation de la mortalité réelle

Plusieurs formules ont été publiées dans la littérature depuis 1992, permettant d'estimer la mortalité réelle des oiseaux et des chauves-souris sur un parc éolien, à partir de la mortalité brute constatée au pied des éoliennes et en prenant en compte les biais mentionnés dans les paragraphes précédents. Pour chaque formule, les notations suivantes seront utilisées :

N = nombre d'individus potentiellement tués (dépend de l'éolienne considérée)

C = nombre de cadavres trouvés (dépend de l'éolienne considérée)

A = coefficient de correction surfacique (dépend de l'éolienne considérée)

p = proportion de cadavres qui perdurent au-delà de l'intervalle entre deux passages

- p = 0,06 sur le parc éolien de Croquettes

t = temps de séjour moyen des cadavres (jours)

- t = 3,81 sur le parc éolien de Croquettes

d = probabilité de détection des leurres

- d = 0,63 pour les chiroptères et d = 1 pour les oiseaux sur le parc éolien de Croquettes

b = nombre de recherches effectués sur le terrain

- b = 20 sur le parc éolien de Croquettes

I = intervalle de temps entre chaque recherche (jours)

- I = 7,3 sur le parc éolien de Croquettes

i = intervalle effectif = -log (0,01) x t

- i = 7,61 sur le parc éolien de Croquettes

ê = coefficient correcteur de l'intervalle = Min (I : i) / I

- ê = 1 sur le parc éolien de Croquettes

M = nombre de turbines prospectées

- M = 5 sur le parc éolien de Croquettes

Winkelman (1992) est le premier à avoir calculé la mortalité estimée en fonction d'un nombre de cadavres retrouvés. Les biais de prédation, de détection et de surface prospectée avaient d'ores et déjà été pris en compte.

$$N = \frac{C * A}{p * d}$$

La formule d'Erickson et al. (2005) utilise le taux de persistance des cadavres comme le nombre moyen de jours de persistance (t) divisé par l'intervalle entre les recherches (I). Cette formule a l'avantage de s'adapter à un changement d'intervalle imprévu. Mathématiquement, si le taux de persistance est supérieur à

l'intervalle, alors il est supérieur à 1, ce qui est impossible en pratique. Avec des intervalles courts, cette méthode a tendance à sous-estimer le taux de prédation et donc sous-estimer le nombre de cadavres tués. Sur le parc éolien de Croquettes, l'intervalle de temps entre les suivis étant en moyenne de 7,3 jours, l'application de cette formule est tout-à-fait pertinente.

$$N = \frac{I * C}{t * d} * A$$

Jones *et al.* proposent en 2009 une estimation unitaire de la mortalité, c'est-à-dire calculée sous chaque éolienne pour chaque recherche de cadavres effectuée sur le terrain. Il faut donc ensuite les cumuler pour obtenir la mortalité estimée sur un parc éolien sur la durée totale de l'étude.

$$N = \frac{C}{d * exp^{-0.5 * I / t_* \hat{e}}} * A \qquad \text{avec p = } exp^{-0.5 * \frac{I}{t}}$$

L'année suivante, une nouvelle formule publiée par Huso (2010) présuppose que la persistance des cadavres dans le temps suit plutôt une distribution exponentielle. Cette approche définit un risque constant impliquant que les cadavres attirent les nécrophages de manière constante au fil du temps. Il est aussi supposé que les intervalles de confiance puissent être inférieurs au nombre de cadavres trouvés sous les éoliennes.

$$N = C / (d * \frac{t * (1 - exp^{-\frac{I}{t}})}{I} * \hat{e}) * A \quad \text{avec } p = t * (1 - exp^{-\frac{I}{t}}) / I$$

Enfin, la formule de Bastos *et al.* (2013) considère la non-constance et l'interdépendance des paramètres « efficacité de recherche » et « persistance des cadavres ». Cet algorithme innovant est capable d'estimer la mortalité potentielle, même en l'absence des cadavres retrouvés et ainsi éviter de fausses interprétations.

$$N = 10 * \exp[0.276 + 0.471*\log 10(I + 1) + 0.463*\log 10(b + 1) + 0.45*\log 10(M + 1) + 0.638*\log 10(C + 1) - 0.432*\log 10(p + 1) - 3.633*\log 10(d + 1)] - 1$$

IV.5.1. Mortalité réelle des chiroptères sur le parc éolien les Croquettes

Les formules présentées précédemment ont été appliquées sur l'ensemble des données brutes de mortalité des chiroptères (Tableau 8), puis la mortalité estimée a été corrigée selon la surface réellement prospectée (Tableau 9). La formule de Winkelman (1992) ayant tendance à surestimer la mortalité et donner des chiffres aberrants, nous avons choisi de ne pas la faire figurer dans cette partie.

	Taux de	Nombre de	Mortalité estimée selon les formules de :						
Éolienne	détection	cadavres	Bastos <i>et al.</i> (2013)	Erickson <i>et al.</i> (2005)	Huso (2010)	Jones <i>et al.</i> , (2009)			
CROQ-01	63 %	4	10,5	12,1	14,2	16,5			
CROQ-02	63 %	1	5,4	3,0	3,6	4,1			
CROQ-03	63 %	2	7,3	6,1	7,1	8,2			
CROQ-04	63 %	2	7,3	6,1	7,1	8,2			
CROQ-05	63 %	1	5,4	3,0	3,6	4,1			
Parc	63 %	10	30,1	30,3	35,5	41,2			
Nombre	Nombre de chiroptères/éolienne			6,1	7,1	8,2			

Tableau 8 : Mortalité estimée des chiroptères selon les formules de Bastos et al. (2013), d'Erickson et al. (2005), Huso (2010) et Jones et al. (2009) sur le parc éolien de Croquettes, entre mai et octobre 2020.

			Mortalité corrigée selon les formules de :						
Eolienne	Nombre de cadavres	Surface prospectée (%)	Bastos <i>et al.</i> (2013)	Erickson <i>et al.</i> (2005)	Huso (2010)	Jones <i>et al.,</i> (2009)			
CROQ-01	4	63,0%	14,3	16,6	19,5	22,6			
CROQ-02	1	60,0%	7,5	4,2	5,0	5,8			
CROQ-03	2	60,0%	10,2	8,5	9,9	11,5			
CROQ-04	2	36,0%	11,9	9,9	11,6	13,5			
CROQ-05	1	66,3%	7,2	4,1	4,7	5,5			
Parc	10	57,1%	43,0	43,3	50,8	58,9			
No	Nombre de chiroptères/éolienne			8,7	10,2	11,8			

Tableau 9 : Mortalité des chiroptères, corrigée selon les coefficients surfaciques, sur le parc éolien des Croquettes, entre mai et octobre 2020. Les éoliennes indiquées en vert présentent une mortalité conforme à la bibliographie et les éoliennes indiquées en rouge présentent une mortalité plus élevée que la bibliographie (Rydell et al., 2010).

En utilisant les biais testés sur le parc éolien, la mortalité réelle des chiroptères sur le parc éolien de Croquettes est estimée entre 8,6 (Bastos et al., 2013) et 11,8 (Jones et al., 2009) chiroptères tués, sur la période d'étude, de mai à octobre 2020. Selon Rydell et al. (2010), le contexte paysager du site d'implantation influence le taux de mortalité des éoliennes, qui est maximal dans les parcs situés dans le littoral ou sur des crêtes et moins important dans des parcs sur des plaines agricoles homogènes (0-3 individus impactés/éolienne/an) ou des paysages bocagers et agricoles (2-5 chauves-souris impactées/éolienne/an). Le contexte paysager du parc éolien est assimilable à la première configuration décrite par cet auteur. En 2020, la mortalité réelle des chiroptères est donc plus élevée que les chiffres trouvés dans la bibliographie quelle que soit la formule utilisée.

IV.5.2. Mortalité réelle des oiseaux sur le parc éolien de Croquettes

Les formules présentées précédemment ont été appliquées sur l'ensemble des données brutes de mortalité des oiseaux (Tableau 10) puis la mortalité estimée a été corrigée selon la surface réellement prospectée (Tableau 11). La formule de Winkelman (1992) ayant tendance à surestimer la mortalité et donner des chiffres aberrants, nous avons choisi de ne pas la faire figurer dans cette partie.

	Taux de	Nombre de		Mortalité estimée selon les formules de :						
Éolienne	détection	cadavres	Bastos et Frickson et al.		Huso (2010)	Jones <i>et al.</i> , (2009)				
CROQ-01	100 %	0	1,0	-	-	-				
CROQ-02	100 %	1	2,1	1,9	2,25	2,61				
CROQ-03	100 %	0	1,0	-	-	-				
CROQ-04	100 %	0	1,0	-	-	-				
CROQ-05	100 %	0	1,0	-	-	-				
Parc	100 %	1	4,0	1,9	2,25	2,61				
Nomb	Nombre d'oiseaux/éolienne		0,8	0,4	0,4	0,5				

Tableau 10 : Mortalité estimée des oiseaux selon les formules de os et al. (2013), d'Erickson et al. (2005), Huso (2010) et Jones et al. (2009) sur le parc éolien de Croquettes, entre mai et octobre 2020.

			Mortalité corrigée selon les formules de :						
Eolienne	Nombre de cadavres	Surface prospectée (%)	Bastos <i>et al.</i> (2013)	Erickson <i>et al.</i> (2005)	Huso (2010)	Jones <i>et al.,</i> (2009)			
CROQ-01	0	63,0%	1,3	-	-	-			
CROQ-02	1	60,0%	2,9	2,7	3,1	3,7			
CROQ-03	0	60,0%	1,4	-	-	-			
CROQ-04	0	36,0%	1,6	-	-	-			
CROQ-05	0	66,3%	1,3	-	-	-			
Parc	1	57,1%	5,7	2,7	3,2	3,7			
	Nombre d'oiseaux/éolienne			0,5	0,6	0,7			

Tableau 11 : Mortalité des oiseaux, corrigée selon les coefficients surfaciques, sur le parc éolien de Croquettes, entre mai et octobre 2020. Les éoliennes indiquées en vert présentent une mortalité conforme à la bibliographie et les éoliennes indiquées en rouge présentent une mortalité plus élevée que la bibliographie (Marx, 2017).

En utilisant les biais testés sur le parc éolien, la mortalité réelle des oiseaux sur le parc éolien de Croquettes est estimée entre 0,5 (Erickson et al., 2005) et 1,1 (Bastos et al., 2013) oiseaux tués, sur la période d'étude, de mai à octobre 2020. Pour les parcs en Zone de Protection Spéciale (ZPS), une mortalité brute de 2,2 oiseaux/éolienne/an, avec une mortalité réelle estimée moyenne de 7 oiseaux/éolienne/an (Marx, 2017) est attendue. En 2020, la mortalité réelle des oiseaux sur le parc éolien de Croquettes est donc conforme aux chiffres trouvés dans la bibliographie.

IV.5.3. Calcul des notes de risque

Pour les oiseaux, la note de sensibilité à l'activité éolienne est déterminée en fonction de la mortalité européenne constatée (Dürr, 2020) pondérée par l'abondance relative de l'espèce, c'est-à-dire le nombre de couple nicheurs (BirdLife International) :

- Mortalité représentant plus de 1 % du nombre de couples nicheurs : note de 4
- Mortalité représentant entre 0,1 % et 1 % du nombre de couples nicheurs : note de 3
- Mortalité représentant entre 0,01 % et 0,1 % du nombre de couples nicheurs : note de 2
- Mortalité représentant entre 0,001 % et 0,01 % du nombre de couples nicheurs : note de 1
- Mortalité représentant moins de 0,001 % du nombre de couples nicheurs : note de 0

Pour les chiroptères, la note de sensibilité à l'activité éolienne est le rapport entre la mortalité européenne constatée de l'espèce sur celle toutes espèces de chiroptères confondues (Dürr, 2020) :

- Mortalité de l'espèce représentant plus de 5 % de la mortalité totale : note de 4
- Mortalité de l'espèce représentant entre 0,5 % et 5 % de la mortalité totale : note de 3
- Mortalité de l'espèce représentant entre 0,1 % et 0,5 % de la mortalité totale : note de 2
- Mortalité de l'espèce représentant moins de 0,1 % de la mortalité totale : note de 1

Enfin, la note de risque, ou vulnérabilité à l'éolien, est le résultat du croisement entre l'enjeu de conservation d'une espèce au niveau national (IUCN, 2017, Tableau 12) et sa sensibilité avérée à l'activité des parcs éoliens, selon la matrice ci-dessous.

		Sensibilité à l'éolien					
		0 1 2 3 4					
	Espèce non protégée			0,5			
5	DD, NA, NE	0,5	1	1,5	2	2,5	
u de vatic	LC	1	1,5	2	2,5	3	
Enjeu de conservation	NT	1,5	2	2,5	3	3,5	
8	VU	2	2,5	3	3,5	4	
	CR, EN	2,5	3	3,5	4	4,5	

Tableau 12 : Calcul de la note de risque d'une espèce à l'éolien, en fonction de sa sensibilité et de son statut de conservation à l'échelle nationale.

IV.6. Sensibilité des espèces retrouvées

IV.6.1. Oiseaux

Le Faucon crécerelle (Falco tinnunculus) est protégé et inscrit en annexe II de la convention de Bonn et en annexe III de la convention de Berne. Il est classé comme « Quasi menacé » sur la liste rouge des oiseaux nicheurs de France, et comme « à surveiller » sur celle de la région Grand-Est. Cette espèce est très sensible aux éoliennes, avec 598 cas de mortalité en Europe dont 105 cas recensés en France (Dürr, 2020). La note de risque du protocole de suivi environnemental des parcs éoliens est élevée (3/4,5).

Figure 9 : Faucon crécerelle. Sens Of Life 2020.

IV.6.2. Chiroptères

Le Tableau 13 résume les notes de risque calculées pour les quatre espèces de chiroptères identifiées sur le parc éolien de Croquettes, pour lesquelles au moins une collision a été constatée au cours des suivis de mortalité.

Espèce	Nom latin	Collisions constatées			Note de risque
Pipistrelle commune	Pipistrellus pipistrellus	5	NT	4	3,5
Pipistrelle de Nathusius	Pipistrellus nathusii	5	NT	4	3,5

Tableau 13 : Calcul des notes de risque pour chaque espèce de chiroptère identifiée pour laquelle une collision a été constatée sur le parc éolien de Croquettes entre mai et octobre 2020.

Figure 10 : Pipistrelle commune. CCO domaine public.

La **Pipistrelle commune** (*Pipistrellus pipistrellus*) est une espèce d'intérêt communautaire (Directive Habitats, Annexe IV; Convention Bonn, Annexe II; EUROBATS Annexe I; Convention de Berne, Annexe II) et classée comme « Quasi-menacée » sur la Liste rouge UICN France métropolitaine. Sur son secteur de chasse, elle vole entre 5 et 30m de hauteur mais elle peut ponctuellement utiliser le milieu aérien (notamment au-dessus de la canopée ou en transit). Les animaux se dispersent en moyenne dans un rayon de 1,3 km autour des colonies (Dietz *et al.*, 2009), très rarement à plus de 5 km (Arthur & Lemaire, 2009). L'espèce étant liée à des zones fortement anthropisées, les éoliennes à proximité des habitations ont une

forte incidence sur l'espèce, avec une mortalité élevée par collision avec les pales des éoliennes ou par barotraumatisme. Il semblerait qu'elles s'approchent de ces structures par simple curiosité (Dubourg-Savage, 2004). Concernant la mortalité, 2386 cas ont été attribués de manière certaine à la Pipistrelle commune. C'est l'espèce dont les cas de mortalités relevés par Dürr (2020) sont les plus nombreux en Europe. En définitif, la Pipistrelle commune apparait comme très sensible au risque de mortalité. Les éoliennes situées à proximité de lisières dont le champ de rotation des pales est proche des supports d'écholocation de l'espèce (lisière, canopée etc.) semblent être les plus à risque. La note de risque du protocole de suivi environnemental des parcs éoliens est très élevée pour cette espèce (3,5/4,5).

La Pipistrelle de Nathusius (Pipistrellus Nathusii) est également une espèce d'intérêt communautaire (Directive Habitats, Annexe IV; Convention de Bonn: Annexe II et EUROBATS Annexe 1; Convention de Berne Annexe II). Elle est classée « Quasi menacée sur la liste rouge des mammifères continentaux de France métropolitaine (2017). Elle chasse généralement entre 3 et 20 mètres de hauteur, mais peut monter à de grandes hauteurs à ciel ouvert. En migration, elle vole entre 30 et 50 mètres et pourrait ainsi être plus menacée par les collisions avec les pales. Cependant on ne sait pas si c'est au cours des migrations ou pendant les phases de chasse qu'elle entre en collision avec ces machines (Arthur & Lemaire, 2015). Cette espèce est la deuxième plus impactée en Europe avec 1590 cas de mortalité, dont 272 en France (Dürr 2020). Cette espèce est donc très sensible au risque de mortalité, et les éoliennes situées le long des grands axes migratoires semblent être les plus à risque. La note de risque du protocole de suivi environnemental des parcs éoliens est très élevée pour cette espèce (3,5/4,5).

Figure 11 : Pipistrelle de Nathusius, Sen Of Life 2020.

⇒ Synthèse du suivi de mortalité du parc éolien de Croquettes

Au total, 11 individus ont été retrouvés morts au pied des éoliennes du parc éolien de Croquettes.

Parmi eux, on dénombre 1 oiseau : le **Faucon crécerelle** (*Falco tinnunculus*) qui possède une note de risque élevée (3/4,5). Une fois cette mortalité brute corrigée avec les biais de prédation et d'observateur, ainsi qu'avec la surface réellement prospectée, la mortalité réelle estimée varie entre 0,5 (Erickson *et al.*, 2005) et 1,1 (Bastos et al., 2013) oiseaux tués par éolienne sur le parc éolien de Croquettes, sur la période étudiée (mai à octobre 2020). Le parc éolien de Croquettes présente donc une mortalité conforme aux chiffres annoncés par Marx (2017).

Sur les 11 individus retrouvés au pied des éoliennes, on dénombre également 10 chiroptères dont 5 **Pipistrelles communes** (*Pipistrellus pipistrellus*) et 5 **Pipistrelle de Nathusius** (*Pipistrellus Nathusii*) qui possèdent une note de risque très élevée (3,5/4). Une fois la mortalité brute corrigée avec les biais de prédation et d'observateur, ainsi qu'avec la surface réellement prospectée, la mortalité réelle estimée varie entre 8,6 (Bastos *et al.*, 2013) et 11,8 (Jones et al., 2009) chiroptères tués par éolienne sur le parc éolien de Croquettes, sur la période étudiée (mai à octobre 2020). Le parc éolien présente donc une mortalité plus élevée que les chiffres annoncés par Rydell *et al.* (2010).

V. Suivi de l'activité des chiroptères par TrackBat

V.1. Matériel et méthodes

V.1.1. Enregistrement acoustique

Les suivis d'activité chiroptérologique en altitude permettent de définir précisément les niveaux d'activité et les cortèges d'espèces qui interagiront réellement avec les pales des machines. Le suivi des chiroptères a été réalisé du 26 mai au 31 octobre 2020, afin de comprendre comment le site est utilisé par ces espèces. Afin de qualifier les déplacements en hauteur, un TrackBat (version acoustique) a été mis en place sur l'éolienne CROQ-03 (Carte 1).

La pose de ces enregistreurs a pour objectifs :

- De caractériser le cortège d'espèces présent sur le site et ses variations au cours de la période d'étude,
- De quantifier l'activité de chaque espèce et ses variations au cours de la période d'étude.

Enregistreurs

Les enregistreurs du dispositif TrackBat mis à disposition sont des enregistreurs numériques à deux voies, configurés pour échantillonner à 196 kHz sur 16 bits. L'enregistrement est déclenché uniquement :

- Entre une heure avant le coucher du soleil et une heure après le coucher du soleil,
- Si l'intensité sonore au-dessus de 10 kHz dépasse le bruit de fond de 5 dB.

Ce paramétrage permet de détecter l'ensemble des espèces européennes (le Petit rhinolophe étant détecté grâce à ses harmoniques basses) (Figure 12).

Le stockage est réalisé sur une clef USB de 256 Go : cette capacité de stockage permet de limiter les opérations de maintenance. Ils disposent d'une connexion 3G permettant d'évaluer à distance les paramètres critiques du fonctionnement du matériel (nombre de fichiers enregistrés, tension d'alimentation, espace de stockage libre). Ces enregistreurs sont montés dans un boîtier métallique étanche (IP68) assurant un blindage contre les perturbations électromagnétiques.

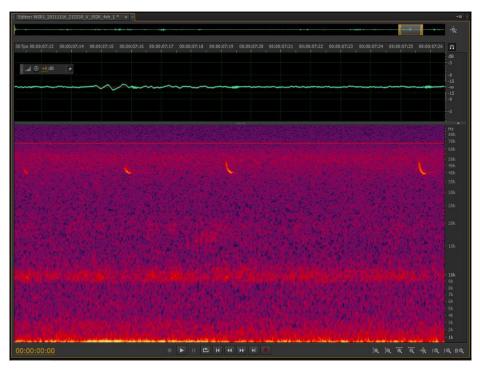


Figure 12 : Exemple de fichier son collecté sur le système d'enregistrement TrackBat.

Microphones

Les microphones sont construits autour d'une capsule Mem's blindée électromagnétiquement, omnidirectionnelle, connectée à deux étages d'amplification et des stabilisateurs d'alimentation. L'ensemble est protégé par une coque en acier inoxydable et une membrane hydrophobe assurant la protection du microphone contre les intempéries. Les microphones sont connectés à leurs câbles blindés par des connecteurs IP68 en acier inoxydable. Ces microphones, développés spécifiquement pour des études sur les nacelles des éoliennes, présentent des performances optimales à la fois en termes de sensibilité et en termes de résistance aux intempéries et aux perturbations électromagnétiques.

Ils sont montés grâce à un support amortisseur évitant les propagations des bruits de la structure dans les microphones (vibrations de la machine, bruits de fonctionnement...). Les microphones sont intégrés aux boîtiers qui sont fixés à l'intérieur de la nacelle.

Figure 13 : Microphone mobilisé pour les études en altitude (à gauche) et boîtier TrackBat avec microphones intégrés, installé sur la nacelle d'une éolienne (à droite).

V.1.2. Méthode d'analyse des sons

Lors de suivis sur de longues périodes, le principe de l'identification des chiroptères est fondé sur :

- L'analyse de leurs émissions ultrasonores (fréquence terminale, incursion en fréquence, fréquence de maximum d'énergie, durée, intervalle...),
- La comparaison de ces mesures à des bases de données telles que celles discutées par Michel Barataud dans l'ouvrage « Ecologie acoustique des chiroptères d'Europe » (2012).

Néanmoins, l'utilisation des signaux d'écholocation pour l'identification des différentes espèces de chiroptères n'est pas toujours possible, compte tenu des recouvrements de caractéristiques entre certains signaux provenant d'espèces différentes. Ces limites sont accentuées par la qualité des sons enregistrés : un fort bruit de fond ou des parasites gênent l'identification en accentuant les recouvrements entre espèces. Dans ce cas, l'identification est limitée au groupe d'espèces, comme présentée dans le Tableau 14.

Nom Français Nom Latin		Groupes identifiés dans des conditions d'enregistrements très favorables	Groupes identifiés dans des conditions d'enregistrements défavorables				
Rhinolophe euryale	Rhinolophus euryale	Rhinolop	Rhinolophe euryale				
Petit Rhinolophe	Rhinolophus hipposideros	Petit Rhinolophe					
Grand Rhinolophe	Rhinolophus ferrumequinum	Grand RI	ninolophe				
Grand Murin	Myotis myotis	C1	- 0.4 - 1				
Petit murin	Myotis blythii	Grands	s Myotis				
Murin de Daubenton	Myotis daubentonii	Murin de Daubenton					
Murin de capaccini	Myotis capaccinii	Murin de capaccini					
Murin à moustache	Myotis mystacinus	Murin à moustaches					
Murin d'Alcathoe	Myotis alcathoe	Murin d'Alcathoe	Petits Myotis				
Murin à oreilles échancrées	Myotis emarginatus	Murin à oreilles échancrées					
Murin de Bechstein	Myotis bechsteinii	Murin de Bechstein					
Murin de Natterer	Myotis nattereri	Murin de Natterer					
Sérotine commune	Eptesicus serotinus	Sérotine commune	Nyctaloids				
Noctule de Leisler	Nyctalus leisleri	Noctule de Leisler					
Noctule commune	Nyctalus noctula	Noctule commune					
Serotine Bicolore	Vespertillo Murinus	Sérotine bicolore					
Vespère de savi	Hypsugo savii	Vespèr	e de savi				
Pipistrelle soprane	Pipistrellus pygmaeus	Pipistrelle soprane					
Minioptère de Schreibers	Miniopterus schreibersii	Minioptère de Schreibers	Pipistrelle / Minioptère				
Pipistrelle commune	Pipistrellus pipistrellus	Pipistrelle commune					
Pipistrelle de Kuhl	Pipistrellus kuhlii	Pipistrelle de Kuhl	Dinistralla da Kubl / Nathusius				
Pipistrelle de Nathusius	Pipistrellus nathusii	Pipistrelle de Nathusius	Pipistrelle de Kuhl / Nathusius				
Oreillard gris	Plecotus austriacus						
Oreillard roux	Plecotus auritus	Oreilla	ards sp.				
Oreillard montagnard	Plecotus macrobularis	•					
Barbastelle d'Europe	Barbastella barbastellus	Barbastell	e d'Europe				
Grande Noctule Nyctalus lasiopterus		Grande Noctule					
Molosse de Cestoni	Tadarida teniotis	Molosse de Cestoni	Molosse / Grande Noctule				

Tableau 14 : Possibilité d'identification des chauves-souris européennes en fonction de leurs émissions ultrasonores.

Les sons bruts sont analysés par un logiciel automatique avec un contrôle manuel des identifications ambiguës. Cette analyse permet d'identifier les espèces fréquentant le site en altitude. Compte tenu des incertitudes de classification de certaines espèces, les identifications à l'espèce ne sont pas utilisées pour le groupe des murins. Ce groupe d'espèces volant à basse altitude, il n'est habituellement peu ou pas retrouvé à hauteur de nacelle et est donc très peu impacté par les pales des éoliennes.

Dans cette étude, l'identification a été menée en combinant trois outils :

- Audacity, un logiciel libre d'analyse et de traitement de son (http://audacity.fr/). Il a été utilisé pour vérifier rapidement les sons ;
- Un système de mesure comparable à Sonobat 3.2, un logiciel payant de mesure de sons, dédié à l'identification de chauves-souris (http://www.sonobat.com/). Grace à des algorithmes d'analyse intelligents, Sonobat génère des mesures automatiques des cris d'écholocation identifiés dans les enregistrements. 76 valeurs sont mesurées sur chaque cri. Les fichiers .csv obtenus sont ensuite utilisés pour l'identification proprement dite;
- Un analogue d'IbatsID (http://ibatsid.cloudapp.net/), une plateforme Java mobilisant des réseaux de neurones artificiels pour identifier les chauves-souris européennes à partir de leurs enregistrements ultrasonores.

Evaluation des indices d'activité

Avec les réserves formulées dans le paragraphe précédent, les indices d'activité ont été déterminés de manière brute, ainsi qu'en prenant en compte une correction du volume de détection. En effet, les espèces rencontrées émettent avec une intensité différente des cris dont les fréquences sont atténuées de manière différente par l'atmosphère (Figure 14 et Figure 15).

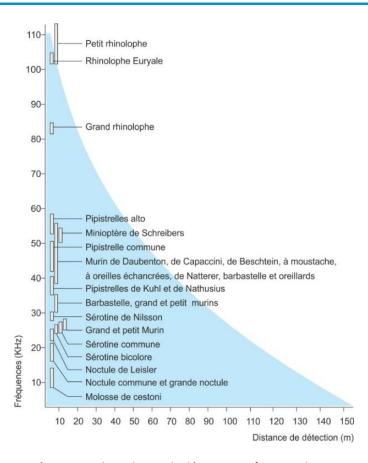


Figure 14 : Représentation des volumes de détection en fonction des groupes d'espèces

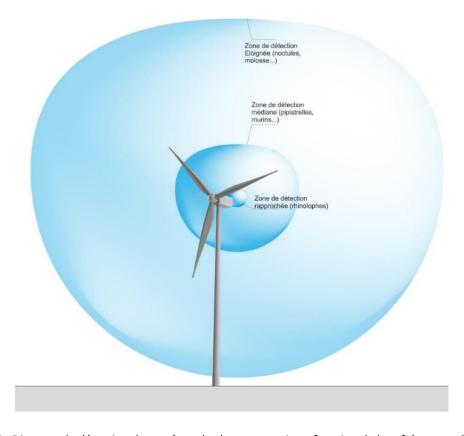


Figure 15 : Distance de détection des espèces de chauves-souris en fonction de leur fréquence d'émission

3: 							
Intensité	milieu ouvert	distance	coefficient				
d'émission	Espéces						
a emission		détection	détec ta bili té				
	Rhinolophus hipposideros	5	5,00				
	Rhinolophus ferr/eur/meh.	10	2,50				
	Myotis emarginatus	10	2,50				
	Myotis alcathoe	10	2,50				
faible	Myotis mystacinus	10	2,50				
e iore	Myotis brandtii	10	2,50				
	Myotis daubentonii	15	1,70				
	Myotis nattereri	15	1,70				
	Myotis bechsteinii	15	1,70				
	Barbastella barbastellus	15	1,70				
	Myotis oxygnathus	20	1,20				
	Myotis myotis	20	1,20				
	Pipistrellus pygm aeus	25	1,00				
moyenne	Pipistrellus pipistrellus	30	0,83				
	Pipistrellus kuhlii	30	0,83				
	Pipistrellus nathusii	30	0,83				
	Miniopterus schreibersii	30	0.83				
	Нурѕидо ѕа иї	40	0,71				
forte	Eptesicus serotinus	40	0,71				
	Plecotus spp	40	0.71				
	Eptesicus nilssonii	50	0,50				
	Vespertilio m urinus	50	0,50				
	Nyctalus leisleri	80	0,31				
très forte	Nyctalus no ctula	100	0,25				
	Tadarida teniotis	150	0,17				
	Nyctalus la siopterus	150	0,17				

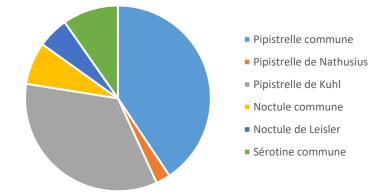
	sous-bois		
Intensité	Espé ces	distance	coefficient
d'émission	Lapecea	dêtection	dê te c ta bil itê
	Rhinolophus hipposideros	5	5,00
	Plecotus spp	5	5,00
	Myotis emarginatus	8	3,10
	Myotis nattereri	8	3,10
	Rhinolophus ferr/eur/meh.	10	2,50
	Myotis alcathoe	10	2,50
faible	Myotis m ystacinus	10	2,50
	Myotis brandtii	10	2,50
	Myotis daubentonii	10	2,50
	Myotis bechsteinii	10	2,50
	Barbastella barbastellus	15	1,70
	Myotis oxygnathus	15	1,70
	Myotis m yotis	15	1,70
	Pipistiellus pygmaeus	20	1,20
	Miniopterus schreibersii	20	1,20
moyenne	Pipistrellus pipistrellus	25	1,00
	Pipistiellus kuhlii	25	1,00
	Pipistiellus nathusii	25	1,00
forte	Hypsugo savii	30	0,83
orte	Eptesious serotinus	30	0,83
	Eptesicus nilssonii	50	0,50
	Vespertilio m urinus	50	0,50
très forte	Nyctalus leisleri	80	0,31
tres torte	Nyctalus noctula	100	0,25
	Tadarida teniotis	150	0,17
	Nyctalus la siopterus	150	0,17

Tableau 15 : Coefficient de détectabilité des principales espèces de chauves-souris européennes

V.2. Résultats des suivis d'activité chiroptérologique

V.2.1. Activité corrigée par espèce

Les enregistrements des ultrasons ont eu lieu en continu du 26 mai au 31 octobre 2020. Ces suivis permettent de caractériser les espèces fréquentant les différents sites, et leurs activités. Le Tableau 16 synthétise le nombre de contacts bruts et corrigés pour chaque espèce contactée à hauteur de la nacelle de l'éolienne CROQ-03. Au total, 556 contacts de chiroptères ont été enregistrés sur le parc de Croquettes. En corrigeant ce nombre en fonction des volumes de détection de chaque espèce, 404,28 contacts sont comptabilisés.


Six espèces ont été contactées et déterminées avec précision (Graphiques 9) :

- La **Pipistrelle commune** (*Pipistrellus pipistrellus*) représente 40,6 % des contacts ;
- La **Pipistrelle de Kuhl** (*Pipistrellus kuhlii*) représente 34,4 % des contacts ;
- La **Sérotine commune** (*Eptesicus serotinus*) représente 9,7 % des contacts ;
- La **Noctule commune** (*Nyctalus noctula*) représente 7,4 % des contacts ;
- La **Noctule de Leisler** (*Nyctalus leisleri*) représente 5,4 % des contacts ;
- La Pipistrelle de Nathusius (Pipistrellus nathusii) représente 2,5 % des contacts.

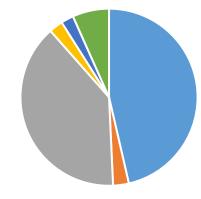
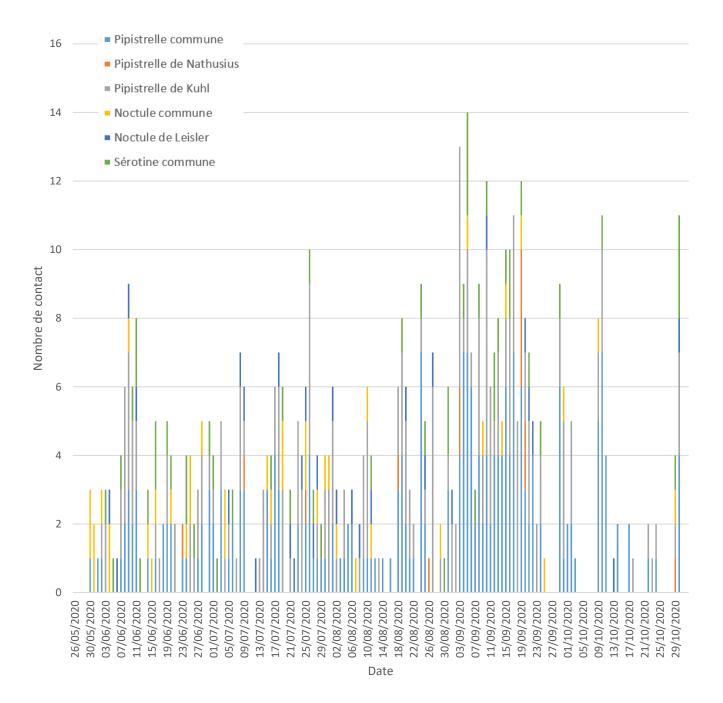

Fankas	Nombre de contacts					
Espèce	Contacts bruts	Contacts corrigés				
Pipistrelle commune	226	187,58				
Pipistrelle de Kuhl	191	158,53				
Sérotine commune	54	27				
Noctule commune	41	10,25				
Noctule de Leisler	30	9,3				
Pipistrelle de Nathusius	14	11,62				
TOTAL	556	404,28				

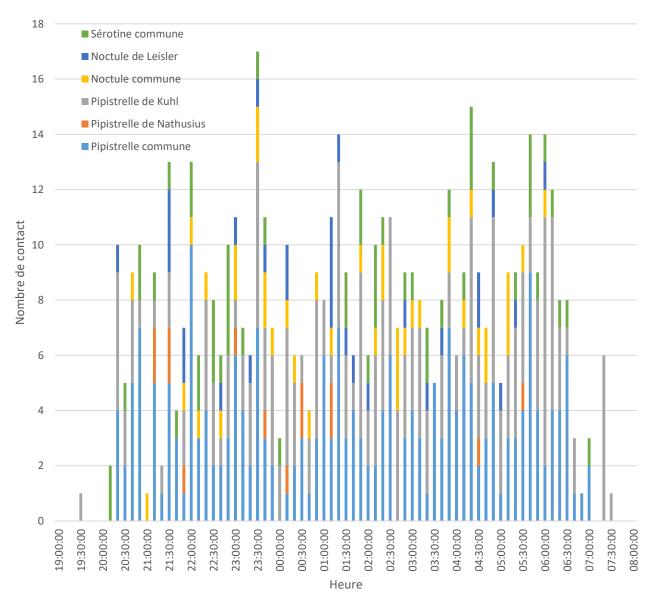
Tableau 16 : Nombre de contacts bruts et corrigés en fonction du volume de détection de chaque espèce de chiroptères, sur le parc éolien de Croquettes, entre mai et octobre 2020.

Proportion des contacts bruts des espèces de chiroptères contactées en nacelle de CROQ-03

Proportion des contacts corrigés des espèces de chiroptères contactées en nacelle de CROQ-03



Graphiques 9 : Proportion des espèces contactées en nacelle de l'éolienne CROQ-03 du parc éolien de Croquettes, entre mai et octobre 2020.


V.2.1. Activité en fonction de la date et de l'heure

En nacelle de l'éolienne CROQ-03, la totalité des contacts a été enregistrée du 30 mai 2020 au 30 octobre 2020 (Graphique 10). Un pic d'activité a été enregistré le 05 septembre 2020. Plus de 90% des contacts de chiroptères autour de cette éolienne sont concentrés entre le 07 juin et le 09 octobre 2020.

Graphique 10 : Activité des chiroptères en fonction de la date, en nacelle de l'éolienne CROQ-03 du parc éolien de Croquettes.

En nacelle de l'éolienne CROQ-03, l'ensemble de l'activité se déroule entre 19h30 et 07h30 (Graphique 11). La majorité de l'activité est concentrée entre le coucher et le lever du soleil avec un fort pic d'activité à 23h30, représentant à lui seul 3 % de l'activité totale enregistrée. Il est composé de 7 contacts de Pipistrelle commune, 6 contacts de Pipistrelle de Kuhl, 2 contacts de Noctule commune, 1 contact de Noctule de Leisler et 1 contact de Sérotine commune. A l'échelle d'une nuit, plus de 90% des contacts de chiroptères sont concentrés entre 20h20 et 06h00, ce qui traduit bien l'impression d'activité continue tout au long de la nuit sur cette éolienne.

Graphique 11 : Activité des chiroptères en fonction de l'heure, enregistrée entre mai et octobre 2020, en nacelle de l'éolienne CROQ-03 du parc éolien de Croquettes.

V.2.2. Activité corrélée avec la vitesse du vent et de la température

Le Tableau 17 présente l'activité des chiroptères en fonction de la vitesse du vent et de la température combinées. Pour plus de lisibilité, les températures extrêmes et les fortes vitesses de vent n'enregistrant aucun contact de chiroptère n'ont pas été inclues dans le tableau.

							Vitesse	du vei	nt (m.s	5 ⁻¹)					
		0	1	2	3	4	5	6	7	8	9	10	11	12	Total
	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7	0	0	2	0	0	0	0	0	0	0	0	0	0	2
	8	0	0	1	0	0	1	2	1	0	0	0	0	0	5
	9	0	0	0	0	0	0	1	0	0	0	0	0	0	1
	10	0	0	3	0	3	9	1	1	0	0	1	0	0	18
	11	0	0	2	1	0	6	0	2	0	0	0	0	0	11
	12	0	0	1	3	6	4	3	0	0	1	0	0	0	18
	13	3	3	0	7	5	8	7	0	0	0	0	0	0	33
	14	0	2	1	7	4	11	6	1	0	0	0	0	0	32
	15	0	0	4	1	2	7	1	4	0	0	0	0	0	19
	16	0	7	10	6	8	6	3	0	0	0	0	0	0	40
	17	1	8	16	6	7	9	2	1	1	0	0	0	0	51
Température (°C)	18	4	4	8	26	10	10	0	3	0	0	0	0	0	65
ure	19	2	12	14	11	9	9	1	0	0	1	0	0	0	59
rat	20	1	6	10	3	4	7	1	2	0	0	0	0	0	34
npé	21	1	3	10	9	6	5	4	0	1	0	1	0	0	40
Ter	22	1	4	6	2	3	4	2	1	0	0	0	0	0	23
	23	2	4	7	7	2	1	0	2	0	0	0	0	0	25
	24	0	4	2	2	1	3	2	0	0	0	0	0	0	14
	25	1	6	3	5	5	2	0	0	0	1	0	0	0	23
	26	2	4	2	3	0	1	0	1	0	0	0	0	0	13
	27	0	1	0	3	2	0	1	0	0	0	0	0	0	7
	28	0	0	1	0	2	1	1	0	1	0	0	0	0	6
	29	0	0	0	3	1	5	1	0	0	0	0	0	0	10
	30	0	0	1	0	1	0	0	0	0	0	0	0	0	2
	31	0	4	0	0	0	0	0	0	0	0	0	0	0	4
	32	0	0	0	0	0	0	0	1	0	0	0	0	0	1
	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T 11	Total	18	72	104	105	81	109	39	20	3	3	2	0	0	556

Tableau 17 : Activité des chiroptères en fonction de la température (°C) et de la vitesse du vent (m.s⁻¹) en nacelle de l'éolienne CROQ-03 du parc éolien de Croquettes, entre mai et octobre 2020.

En nacelle de l'éolienne CROQ-03, l'activité la plus forte a été enregistrée pour une vitesse de vent de 3 m.s⁻¹ combinée à une température de 18°C (26 contacts chacun). Plus de 90% des contacts de chiroptères sont enregistrés pour des vitesses de vent inférieures à 6 m.s⁻¹ et des températures supérieures à 12°C.

V.2.3. Zoom sur les espèces présentes

a) Pipistrelle commune (Pipistrellus pipistrellus)

Figure 16 : Pipistrelle commune. CCO domaine public.

La **Pipistrelle commune** (*Pipistrellus* pipistrellus) est une espèce d'intérêt communautaire (annexe IV de la Directive Habitats, annexe II de la Convention Bonn, annexe I de l'accord EUROBATS et annexe II de la Convention de Berne) et classée comme « Quasi-menacée » sur la Liste rouge UICN France métropolitaine.

Cette espèce fréquente tous les types de milieux, même les zones fortement urbanisées. Pour la chasse, on note une préférence pour les zones humides, les jardins et parcs, puis les milieux forestiers et enfin les milieux agricoles. Peu

lucifuge, elle est capable de s'alimenter autour des éclairages. Elle est active dans le premier quart d'heure qui suit le coucher du soleil. Les distances de prospection varient en fonction des milieux mais dépassent rarement quelques kilomètres. Très opportuniste, elle chasse les insectes volants, préférentiellement les Diptères mais aussi des Lépidoptères, Coléoptères, Trichoptères, Neuroptères, Cigales et Ephémères. Sur son secteur de chasse, elle vole entre 5 et 30m de hauteur mais elle peut ponctuellement utiliser le milieu aérien (notamment au-dessus de la canopée ou en transit). Les animaux se dispersent en moyenne dans un rayon de 1,3 km autour des colonies (Dietz, 2009), très rarement à plus de 5 km (Arthur et Lemaire, 2009). Ses plus longs déplacements sont saisonniers, depuis des secteurs de mise-bas vers des secteurs de reproduction (« swarming ») ou vers des secteurs d'hivernage situés généralement à moins de 20km les uns des autres.

Les gîtes de cette espèce sont fortement liés aux habitations humaines ; la Pipistrelle commune est très anthropophile que ce soit pour ses gîtes d'été ou d'hiver. Elle hiberne, de novembre à fin mars, préférentiellement dans des endroits confinés dans les bâtiments non chauffés (greniers, églises, bunkers). Pour la mise-bas, elle se regroupe en colonies de 30 à une centaine de femelles, essentiellement dans des gîtes anthropiques (maisons, granges, garages). Le développement des jeunes est rapide et ils sont volants à quatre semaines. Les parades sont observées de mi-juillet à octobre (Beucher Y., com. pers.).

Elle émet des cris entre 42 et 51 kHz (en milieu très perturbé). Ses cris sociaux représentent un trille à 18kHz.

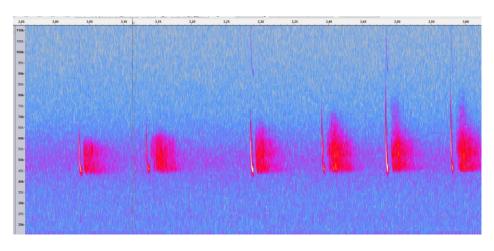


Figure 17 : Sonogramme de cris émis par une Pipistrelle commune

Espèce étant liée à des zones fortement anthropisées, les éoliennes à proximité des habitations ont une forte incidence sur l'espèce, avec une mortalité élevée par collision avec les pales des éoliennes ou par barotraumatisme. Il semblerait qu'elles s'approchent de ces structures par simple curiosité (MJ Dubourg-Savage, 2004).

Dans le cadre de notre étude, les valeurs d'activité caractérisant l'activité de la Pipistrelle commune sont les suivantes :

	Pipistrelle comm	une – CROQ-03				
	Pic d'activité Plage d'activité					
Nombre de contacts bruts	N = 2	226				
Nombre de contacts corrigés	N = 18	37,58				
Proportion par rapport aux contacts totaux	40,6 %					
	N = 7, le 24/08/20, le					
Nombre de contacts en fonction de la date	04/09/2020, le 05/09/20, le	Du 30/05/20 au 30/10/20				
	17/09/20 et le 10/10/20					
Nombre de contacts en fonction de l'heure	N = 10 à 22h00	Entre 20h20 et 07h00				
Nombre de contacts en fonction de la température	N = 27 pour 17°C	7°C à 31°C				
Nombre de contacts en fonction du vent	N = 29 pour 2,5 m.s ⁻¹	0 à 7,5 m.s ⁻¹				

Tableau 18 : Données d'activité de la Pipistrelle commune sur le parc éolien de Croquettes en 2020.

Concernant la mortalité en Europe, 2386 cas ont été attribués de manière certaine à la Pipistrelle commune. C'est l'espèce dont les cas de mortalité relevés par Dürr (2020) sont les plus nombreux. En définitif, la Pipistrelle commune apparaît comme très sensible au risque de mortalité. Les éoliennes situées à proximité de lisières dont le champ de rotation des pales est proche des supports d'écholocation de l'espèce (lisière, canopée etc.) semblent être les plus à risque. La note de risque du protocole de suivi environnemental des parcs éoliens est très élevée (3,5/4,5).

b) Pipistrelle de Nathusius (Pipistrellus nathusii)

La **Pipistrelle de Nathusius** (*Pipistrellus nathusii*) est une espèce d'intérêt communautaire (annexe IV de la Directive Habitats, annexe II de la Convention Bonn, annexe I de l'accord EUROBATS et annexe II de la Convention de Berne) et classée comme « Quasi-menacée » sur la Liste rouge UICN France métropolitaine.

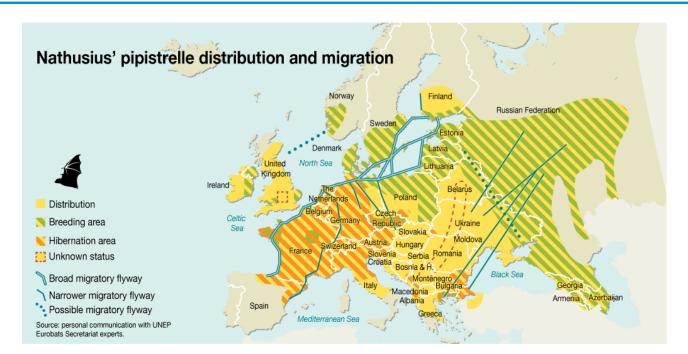

Cette pipistrelle est présente essentiellement en Europe centrale et se reproduit principalement au Nord de son aire de répartition. Espèce migratrice, elle entreprend des déplacements saisonniers sur de très grandes distances (souvent plus de 1000 km) pour rejoindre ses lieux de mise-bas ou

Figure 18 : Pipistrelle de Nathusius. CCO domaine public.

ses gîtes d'hibernation. Les femelles quittent le sud-ouest de l'Europe au printemps (avril) en direction de leurs sites de mise-bas dans le nord-est de l'Europe. Les mises-bas ont lieu début juin principalement en gîtes arboricoles, entre les fentes du bois ou les chablis. Les jumeaux sont fréquents. Les premiers jeunes sont volants au plus tard mi-juillet. Les femelles sont fidèles à leur lieu de naissance. Ces femelles, accompagnées des jeunes, regagnent leurs gîtes d'hibernation et les secteurs de parades au sud-ouest de l'Europe à partir du mois de septembre (un pic est observé fin septembre en Lorraine). Les mâles, quant à eux, sont plus sédentaires et restent erratiques durant la période estivale. Ils se déplacent vers leur secteur de reproduction (parades) au retour des femelles (fin août et septembre).

Les accouplements ont lieu de début août à septembre, les mâles se constituent un harem de 2 à 5 femelles. Ses gîtes hivernaux se situent dans les cavités arboricoles, les fissures et les décollements d'écorce, mais aussi au sein des bâtiments derrière les bardages en bois et les murs creux frais. Elle hiberne en solitaire ou en petits groupes d'une douzaine, voire une cinquantaine d'individus, parfois en mixité avec les trois autres Pipistrelles. Son comportement migratoire induit des disparités fortes quant à sa présence et à son comportement estival. Certaines régions n'abritent que des mâles, en essaims ou solitaires, d'autres des colonies de mise-bas (de 20 à 200 femelles) et sur d'autres secteurs géographiques, il peut y avoir les deux sexes.

Carte 4 : Carte de répartition et de migration de la Pipistrelle de Nathusius

Espèce forestière, la Pipistrelle de Nathusius patrouille à basse altitude le long des zones humides et chasse aussi en plein ciel à grande hauteur, préférentiellement en milieux boisés diversifiés, ou à proximité de structures linéaires (haies, lisières forestières...) mais aussi en milieu urbain sous des lampadaires. Elle quitte son gîte en moyenne 50 minutes après le coucher du soleil. Elle consomme essentiellement des Chironomes, et occasionnellement des Trichoptères, Névroptères, Lépidoptères, Hyménoptères et Coléoptères. Son vol de chasse est généralement situé entre 3 et 20 mètres de haut. Cette hauteur de vol peut aussi être plus importante notamment lors des phases de transit ou de migration. Son domaine vital peut atteindre une vingtaine de kilomètres carrés et elle s'éloigne jusqu'à une demi-douzaine de kilomètres de son gîte.

Ses émissions sonores sont comprises entre 34 et 42 kHz, de 4 à 11 ms.

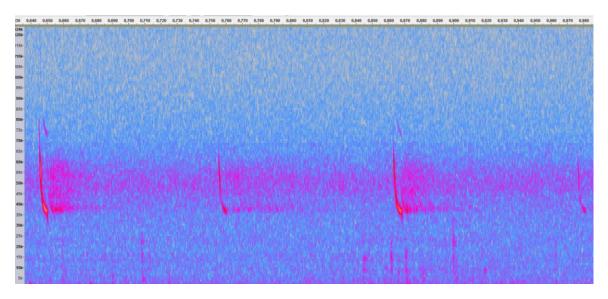


Figure 19 : Sonogramme des cris de Pipistrelle de Nathusius/Kuhl

Dans le cadre de notre étude, les valeurs d'activité caractérisant l'activité de la Pipistrelle de Nathusius sont les suivantes :

	Pipistrelle de Nathusius – CROQ-03			
	Pic d'activité	Plage d'activité		
Nombre de contacts bruts	N = 14			
Nombre de contacts corrigés	N = 11,62			
Proportion par rapport aux contacts totaux	2,5 %			
Nombre de contacts en fonction de la date	N = 4, le 19/09/20	Du 23/06/20 au 29/10/20		
Nombre de contacts en fonction de l'heure	N = 2 à 21h10, 21h30, 00h30 et 01h10	Entre 21h10 et 05h30		
Nombre de contacts en fonction de la température	N = 4 pour 18°C et 19°C	14°C à 25°C		
Nombre de contacts en fonction du vent	N = 5 pour 3 m.s ⁻¹	1 à 5,5 m.s ⁻¹		

Tableau 19 : Données d'activité de la Pipistrelle de Nathusius sur le parc éolien de Croquettes en 2020.

La Pipistrelle de Nathusius apparaît comme très sensible au risque de mortalité lié aux éoliennes : avec 1590 cas recensés en Europe (Dürr, 2020), elle est la 2^{ème} espèce de chiroptères la plus impactée. Les éoliennes situées à proximité de lisières et des voies de migrations semblent être les plus à risque. La note de risque du protocole de suivi environnemental des parcs éoliens est très élevée (3,5/4,5).

c) Pipistrelle de Kuhl (*Pipistrellus kuhlii*)

Figure 20 : Pipistrelle de Kuhl. CCO domaine public.

La **Pipistrelle de Kuhl** (*Pipistrellus kuhlii*) est une espèce d'intérêt communautaire (annexe IV de la Directive Habitats, annexe II de la Convention Bonn, annexe I de l'accord EUROBATS et annexe II de la Convention de Berne) et classée comme « Préoccupation mineure » sur la Liste rouge UICN France métropolitaine.

Cette espèce se retrouve autour du bassin méditerranéen et dans l'Ouest de l'Asie, jusqu'au Pakistan et à la frontière de l'Inde. En Europe occidentale, elle est présente tout au le long de la côte Atlantique.

Opportuniste, elle se nourrit des Culicidés, des Lépidoptères, des Chironomes, des Hyménoptères, des Brachycères, des Tipulidés et des Coléoptères, qu'elle chasse soit directement à la gueule, soit en utilisant ses membranes. C'est une espèce anthropophile. On la trouve dans les zones sèches, près des falaises, des rivières mais aussi les paysages agricoles, les milieux humides et les forêts de faible altitude. Elle se nourrit préférentiellement dans les parcs urbains avec éclairages publics mais elle chasse également dans les espaces boisés, ouverts, les zones humides et montre une nette attirance pour les zones urbaines avec parcs, jardins et éclairages publics. Elle devient active dans la première demi-heure succédant au coucher du soleil.

Elle hiberne avec d'autres Pipistrelles et préfère les anfractuosités des bâtiments frais même s'il est également possible de la retrouver dans des fissures de falaises ou dans des caves. Pour la mise-bas, ces Pipistrelles forment des colonies allant de 20 à une centaine d'individus et s'installent dans n'importe quel type d'anfractuosité sur les bâtiments. Il est beaucoup plus rare de les retrouver dans des cavités arboricoles. Les femelles sont fidèles à leur colonie de naissance. En fonction de la zone géographique, les naissances s'effectuent de mai à début juin. Les jumeaux sont fréquents. L'époque des parades se déroule entre la fin du mois d'août jusqu'au mois de septembre et les Pipistrelles utilisent des gîtes intermédiaires. Cette espèce ne semble pas être migratrice. La longévité maximale observé est de huit ans et l'espérance de vie moyenne est se situe entre 2 et 3 ans.

Dans le cadre de notre étude, les valeurs d'activité caractérisant l'activité de la Pipistrelle de Kuhl sont les suivantes :

	Pipistrelle de Kuhl – CROQ-03			
	Pic d'activité	Plage d'activité		
Nombre de contacts bruts	N = 191			
Nombre de contacts corrigés	N = 158,53			
Proportion par rapport aux contacts totaux	34,4 %			
Nombre de contacts en fonction de la date	N = 7, le 03/09/20 Du 02/06/20 au 30/			
Nombre de contacts en fonction de l'heure	N = 9 à 06h00 Entre 19h30 e			
Nombre de contacts en fonction de la température	re N = 25 pour 18°C 10°C à 29°			
Nombre de contacts en fonction du vent	$N = 23 \text{ pour } 3 \text{ m.s}^{-1}$	0 à 7 m.s ⁻¹		

Tableau 20 : Données d'activité de la Pipistrelle de Kuhl sur le parc éolien de Croquettes en 2020.

L'espèce est abondante et même en expansion depuis quelques années. Elle jouit d'une grande aire de répartition. Cependant, par son caractère anthropophile, cette chauve-souris est souvent victime de dérangement ou de destruction de ses gîtes et les chats et les collisions automobiles sont les deux causes les plus connues d'accidents (Arthur, 2009). Les suivis de mortalité réalisés sur les éoliennes montrent que la Pipistrelle de Kuhl est la 5ème espèce la plus impactée, soit par collision, soit par barotraumatisme, avec 469 cadavres recensés en Europe (Dürr, 2020). Ceci s'explique par son affinité pour les milieux ouverts, sa tendance à suivre les structures verticales et par sa curiosité (LPO Rhône-Alpes). La note de risque du protocole de suivi environnemental des parcs éoliens est relativement élevée (2,5/4,5).

d) Noctule commune (*Nyctalus noctula*)

Figure 21 : Noctule commune. CCO domaine public.

La **Noctule commune** (*Nyctalus noctula*) est une espèce d'intérêt communautaire (annexe IV de la Directive Habitats, annexe II de la Convention Bonn, annexe I de l'accord EUROBATS et annexe II de la Convention de Berne) et classée comme « Vulnérable » sur la Liste rouge UICN France métropolitaine.

Espèce forestière, la Noctule commune s'est adaptée à la vie urbaine. Sa présence est liée à la proximité de l'eau. Elle exploite une grande diversité de territoires : massifs forestiers, prairies, étangs, alignements d'arbres, halos de lumière...

Elle quitte son gîte quand il fait encore clair, voire jour. La Noctule commune peut chasser sur une grande diversité d'habitats (du massif forestier à la prairie, en

passant par des zones humides et des secteurs urbanisés). Elle survole le plus souvent ces secteurs de chasse à haute altitude (30 à 100 mètres). Ses territoires de chasse sont vastes (jusqu'à 50 hectares) et sont éloignés du gîte d'environ 10km en moyenne (Dietz, 2009). Elle chasse le plus souvent en groupe, et consomme ses proies en vol. Exclusivement insectivore et opportuniste, son régime alimentaire va des microdiptères aux Coléoptères (Arthur et Lemaire, 2009). Elle hiberne de novembre à mars, souvent en groupe mixte, en forêt (larges cavités, loges de pics, ...) comme en ville (corniches de pont, immeuble, ...). En été, la Noctule commune est présente dans les mêmes types de gîtes qu'en hiver, en solitaire, ou en petits essaims.

Espèce migratrice, elle est capable d'accomplir des parcours de plusieurs centaines de kilomètres (jusqu'à 1546 km). En quelques semaines, l'essentiel des femelles va migrer vers des territoires de mise-bas à l'Est et au Nord de l'Europe, et il ne restera plus que des mâles et quelques très rares colonies de parturition dispersées en France. Elles mettent bas à partir de mi-juin, d'un ou deux petits. Elles peuvent être aptes à la reproduction dès leur première année. L'émancipation est atteinte au bout de sept à huit semaines. Le retour s'effectue avec les jeunes de septembre à octobre, pour rejoindre les mâles (plus sédentaires) sur les sites de parades, et pour retourner dans leur secteur d'hibernation. Lors de ces déplacements, il est possible d'observer des noctules communes en vol parmi des groupes d'oiseaux migrateurs à une centaine de mètres d'altitude en plein jour. Une partie des populations européennes montre des tendances sédentaires. Comparée à toutes les autres espèces, la Noctule commune

montre une très courte espérance de vie estimée à 2,2 ans (Arthur et Lemaire, 2009). Actuellement, le record de longévité connu n'est que de douze ans.

Les émissions sonores de la Noctule commune sont très puissantes, entre 16 et 24kHz ; elles peuvent porter jusqu'à 150m.

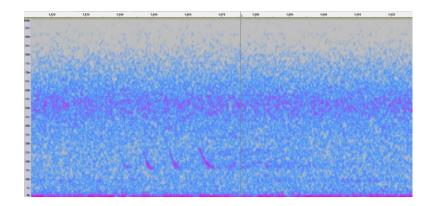


Figure 22 : Sonogramme de cris émis par une Noctule commune

Dans le cadre de notre étude, les valeurs d'activité caractérisant l'activité de la Noctule commune sont les suivantes :

	Noctule commune – CROQ-03			
	Pic d'activité Plage d'activité			
Nombre de contacts bruts	N = 41			
Nombre de contacts corrigés	N = 10,25			
Proportion par rapport aux contacts totaux	7,4 %			
Nombre de contacts en fonction de la date	Trop peu de données Du 30/05/20 au 30/			
Nombre de contacts en fonction de l'heure	N = 3 à 02h40 et 05h10	Entre 20h40 et 06h00		
Nombre de contacts en fonction de la température	N = 5 pour 15°C et 20°C	10°C à 30°C		
Nombre de contacts en fonction du vent	onction du vent N = 5 pour 2,5 et 6,5 m.s ⁻¹ 0,5 à 10 m			

Tableau 21 : Données d'activité de la Noctule commune sur le parc éolien de Croquettes en 2020.

La Noctule commune est la 3^{ème} espèce la plus touchée par l'impact éolien en Europe : 1543 cas de mortalité ont été attribués de manière certaine à la Noctule commune (Dürr, 2020). Son comportement de chasse et ses déplacements à des altitudes élevées la rende particulièrement sensible à cet impact. La note de risque du protocole de suivi environnemental des parcs éoliens est très élevée (4/4,5).

e) Noctule de Leisler (Nyctalus leisleri)

La **Noctule de Leisler** (*Nyctalus leisleri*) est une espèce d'intérêt communautaire (annexe IV de la Directive Habitats, annexe II de la Convention Bonn, annexe I de l'accord EUROBATS et annexe II de la Convention de Berne) et classée comme « Quasi-menacée » sur la Liste rouge UICN France métropolitaine.

Figure 23 : Noctule de Leisler. CCO domaine public.

La Noctule de Leisler est une espèce d'Europe centrale dont la répartition s'étend vers le Sud jusqu'en Espagne en même temps qu'elle se raréfie.

La Noctule de Leisler peut chasser sur pratiquement tous les types de milieux (du sous-bois à la plaine céréalière en passant par des zones humides et des secteurs urbanisés). Espèce forestière, elle a une préférence pour les massifs à essences caduques assez ouverts et recherche la proximité des milieux humides. Les femelles chassent essentiellement à moins d'une dizaine de kilomètres du gîte, l'envol se fait dès le coucher du soleil. Durant sa chasse, la Noctule de Leisler peut voler à des hauteurs de vol de plus de 100 mètres, notamment au-dessus de la canopée. Ses proies sont de petite et de moyenne taille : Diptères, Lépidoptères, Coléoptères, Hémérobiidés, Chrysopidés et aussi Ephéméroptères, Trichoptères ou Chironomes (Arthur et Lemaire, 2009). Durant la migration et les phases de transit, il est probable que les hauteurs de vols soient également assez élevées (de l'ordre de 100 mètres). Pour l'hibernation, l'espèce n'est pas cavernicole, elle occupe essentiellement des cavités arboricoles parfois mixtes avec la Noctule commune. En France, les gîtes de mise-bas sont rares mais on en découvre chaque année du Nord de la France à la Corse. Les nurseries en cavité arboricole comptent habituellement de 20 à 40 femelles, parfois 100, et peuvent atteindre 150 dans les bâtiments. Les naissances s'échelonnent de mi-juin à début juillet, les jumeaux ne sont pas rares. Les jeunes sont presque tous volants début août. A la fin de l'été, le retour des femelles revenant de l'Est de l'Europe sonne le début des parades, les mâles vont former des harems regroupant jusqu'à dix femelles et s'accoupler.

L'essentiel des effectifs migrants sont des femelles qui doivent relier les secteurs d'hibernation du Sud-Ouest de l'Europe pour remonter vers les sites de mise bas au Nord-Est, même si des colonies de mise bas sont récemment découvertes en Europe de l'Ouest. La migration de printemps semble se dérouler durant le mois d'avril. Les retours dans le sud de l'Europe interviennent à partir de début août et peuvent être effectifs jusqu'au mois d'octobre. Elle accomplit de très longs déplacements (pouvant atteindre 1567 km entre le Nord de l'Allemagne et l'Espagne). Son espérance de vie moyenne est estimée à 2,7 ans, la plus vieille Noctule de Leisler connue a atteint l'âge de onze ans.

Les émissions sonores de la Noctule de Leisler sont comprises entre 21 et 26kHz.

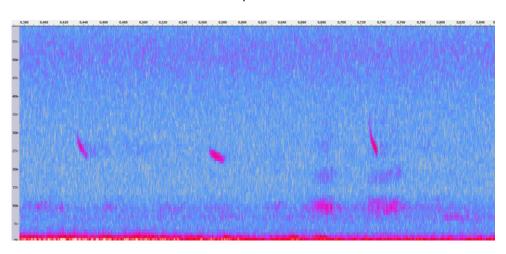


Figure 24 : Sonogramme de cris émis par une Noctule de Leisler

Dans le cadre de notre étude, les valeurs d'activité caractérisant l'activité de la Noctule de Leisler sont les suivantes :

	Noctule de Leisler – CROQ-03			
	Pic d'activité Plage d'activi			
Nombre de contacts bruts	N = 30			
Nombre de contacts corrigés	N = 9,3			
Proportion par rapport aux contacts totaux	5,4 %			
Nombre de contacts en fonction de la date	Trop peu de données Du 04/06/20 au 30/1			
Nombre de contacts en fonction de l'heure	N = 4 à 01h10	De 20h20 à 06h00		
Nombre de contacts en fonction de la température	N = 5 pour 20°C	10°C à 32°C		
Nombre de contacts en fonction du vent	N = 4 pour 3, 7 et 7,5 m.s ⁻¹	1 à 10,5 m.s ⁻¹		

Tableau 22 : Données d'activité de la Noctule de Leisler sur le parc éolien de Croquettes en 2020.

La Noctule de Leisler est la 4^{ème} espèce la plus touchée par l'impact éolien en Europe : 712 cas de mortalité ont été attribués de manière certaine (Dürr, 2020). Sa technique de chasse en hauteur et ses grands déplacements à des altitudes à risque expliquent sa sensibilité. La note de risque du protocole de suivi environnemental des parcs éoliens est très élevée (3,5/4,5).

f) Sérotine commune (Eptesicus serotinus)

La **Sérotine commune** (*Eptesicus serotinus*) est une espèce d'intérêt communautaire (annexe IV de la Directive Habitats, annexe II de la Convention Bonn, annexe I de l'accord EUROBATS et annexe II de la Convention de Berne) et classée comme « Quasi-menacée » sur la Liste rouge UICN France métropolitaine.

Figure 25 : Sérotine commune. CCO domaine

La Sérotine commune est une grande espèce de chauve-souris très répandue en France. Espèce de plaine, elle est campagnarde ou urbaine, avec une nette préférence pour les milieux mixtes (pâtures, haies, lisières forestières, milieux

urbains, plans d'eau et cours d'eau...). Une végétation clairsemée avec des feuillus semble être recherchée. Elle ne s'aventure guère en milieu fermé. En forêt, elle suit les chemins forestiers et les coupe-feux. Son territoire de chasse est souvent situé à moins de 5km de son gîte. Très sédentaire, la distance entre ses gîtes d'hiver et d'été est souvent inférieure à 50km. Elle gîte en hiver dans des greniers, des églises, entre l'isolation et les toitures... Elle hiberne de novembre à fin mars et ne quittera pas son gîte si la température baisse et risque de mourir si celle-ci s'effondre (Beucher Y., com. pers.). En été, elle s'installe dans des bâtiments très chauds, au sein de combles. Espèce lucifuge, elle ne tolère pas l'éclairage des accès à son gîte.

La Sérotine commune chasse les insectes en vol du sol jusqu'à la canopée, le long des structures arborées ou audessus de lampadaires. Elle chasse le plus souvent à hauteur de végétation, survolant les vergers, les prairies, les pelouses, les plans d'eau ou les éclairages publics. La taille moyenne de son domaine vital est d'environ 15km². Opportuniste, elle se nourrit de nombreux insectes, Coléoptères, Lépidoptères, Trichoptères, Diptères et Hyménoptères, qu'elle capture en vol. Crépusculaire à nocturne, elle se met généralement en chasse quinze minutes après le coucher de soleil et durant 1 à 2,5 heures. Elle chasse en petite escadrille ou en solitaire (Arthur et Lemaire, 2009).

Les mâles sont solitaires tandis que les femelles vont se regrouper pour la mise-bas en colonies de 10 à 50 individus. La femelle donne naissance à un jeune, courant juin. Celui-ci tentera ses premiers vols à environ vingt jours et il quittera pour la première fois son lieu de naissance entre 4 et 5 semaines. Très fidèle à son gîte, elle y reviendra tant qu'il reste accessible. La plus vieille Sérotine commune baguée a atteint l'âge de 24 ans. Elle émet des ultrasons dans une fréquence modulaire aplanie comprise entre 20 et 26 kHz.

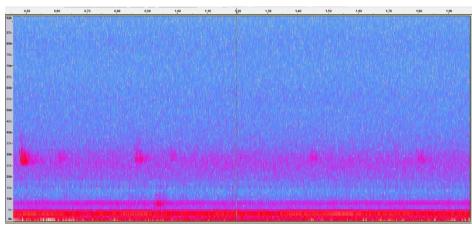


Figure 26 : Sonogramme de cris émis par une Sérotine commune

Dans le cadre de notre étude, les valeurs d'activité caractérisant l'activité de la Sérotine commune sont les suivantes :

	Sérotine commune – CROQ-03			
	Pic d'activité Plage d'activité			
Nombre de contacts bruts	N = 54			
Nombre de contacts corrigés	N = 27			
Proportion par rapport aux contacts totaux	9,7 %			
Nombre de contacts en fonction de la date	N = 3, le 30/10/20	Du 03/06/20 au 30/10/20		
Nombre de contacts en fonction de l'heure	N = 4 à 22h50	Entre 20h10 et 07h00		
Nombre de contacts en fonction de la température	N = 8 pour 14 °C	11°C à 29°C		
Nombre de contacts en fonction du vent	N = 9 pour 3 m.s ⁻¹	1 à 6 m.s ⁻¹		

Tableau 23 : Données d'activité de la Sérotine commune sur le parc éolien de Croquettes en 2020.

La Sérotine commune est la 10^{ème} espèce la plus impactée par l'éolien en Europe : 120 cas ont été attribués de manière certaine à la Sérotine commune, et 115 cas où la détermination n'a pu discriminer la Sérotine commune et la Sérotine isabelle (Dürr, 2020). Les éoliennes situées à proximité de lisières et dont le champ de rotation des pales passe proche des structures de végétation (canopée, lisières...) sont les plus dangereuses. La note de risque du protocole de suivi environnemental des parcs éoliens est élevée (3/4,5).

V.3. Synthèse des niveaux de patrimonialité des espèces contactées et sensibilités aux éoliennes

Le Tableau 24 présente l'ensemble des espèces contactées au cours du suivi annuel, en fonction de leur caractère patrimonial (statuts de protection et de conservation) et de leur sensibilité aux collisions avec les éoliennes.

Toutes les espèces de chauves-souris présentes en France sont intégralement protégées par l'Arrêté Ministériel du 17 avril 1981 relatif à la protection de l'environnement. Depuis 1979, au niveau international, la Convention de Bonn et la Convention de Berne demandent aux états contractants d'assurer la protection de toutes les espèces de chauves-souris décrites dans les annexes, ainsi que la protection des gîtes de reproduction et d'hibernation. En 1992, la Directive « Habitat - Faune – Flore » demande aux pays de la Communauté Européenne la protection stricte de toutes les espèces de chiroptères (elles figurent à l'annexe IV), ainsi que la désignation de Zones Spéciales de Conservation pour les 12 espèces figurant à l'annexe II. Dix-neuf espèces sont classées dans la liste rouge de la faune menacée de France et 13 espèces sont présentes sur la liste rouge mondiale.

Espèce	Directive Habitats	Berne	Bonn	EUROBATS	LR Europe	LR France	LR Région	Indice de vulnérabilité
Noctule commune	IV	III	П	1	LC	VU	NT	4
Pipistrelle de Nathusius	IV	-	П	1	LC	NT	NT	3,5
Pipistrelle commune	IV	-	П	1	LC	NT	LC	3,5
Noctule de Leisler	IV	-	П	1	LC	NT	NT	3,5
Sérotine commune	IV	-	П	-	LC	NT	LC	3
Pipistrelle de Kuhl	IV	-	П	1	LC	LC	LC	2,5

Tableau 24 : Synthèse des valeurs patrimoniales (statuts de protection et de conservation) de chaque espèce de chiroptère recensée sur le parc éolien de Croquettes entre mai et octobre 2020.

Légende :

Directive Habitats = Annexe de la Directive européenne dite Directive Habitats-Faune-Flore

Berne/Bonn = Annexe des conventions de Berne/Bonn

EUROBATS = Annexe de la convention de Bonn, accord EUROBATS

LR Europe/France = Liste rouge Européenne / Française (2017) / Régionale (2013, validée par le CSRPN, Centre-Val de Loire).

VU : Vulnérable / NT : Quasi menacée / LC : Préoccupation mineure

La Noctule commune est l'espèce la plus vulnérable face au risque de collision avec les pales des éoliennes, suivie de près par la Pipistrelle de Nathusius, la Pipistrelle commune et la Noctule de Leisler. La Sérotine commune présente une vulnérabilité moins élevée, et celle de la Pipistrelle de Kuhl est la plus faible.

Synthèse du suivi d'activité des chiroptères sur le parc éolien de Croquettes par TrackBat

Avec un total de 404,28 contacts corrigés, six espèces ont été identifiées en altitude :

- La Pipistrelle commune (Pipistrellus pipistrellus) représente 40,6 % des contacts ;
- La **Pipistrelle de Kuhl** (*Pipistrellus kuhlii*) représente 34,4 % des contacts ;
- La **Sérotine commune** (*Eptesicus serotinus*) représente 9,7 % des contacts ;
- La **Noctule commune** (*Nyctalus noctula*) représente 7,4 % des contacts ;
- La **Noctule de Leisler** (*Nyctalus leisleri*) représente 5,4 % des contacts ;
- La **Pipistrelle de Nathusius** (*Pipistrellus nathusii*) représente 2,5 % des contacts.

L'ensemble des contacts a été enregistré du 30 mai 2020 au 30 octobre 2020. Plus de 90% des contacts sont concentrés entre le 07 juin et le 09 octobre 2020, avec un pic d'activité enregistré le 05 septembre 2020.

L'ensemble de l'activité se déroule entre 19h30 et 07h30, avec un pic d'activité à 23h30. Plus de 90% des contacts de chiroptères sont concentrés entre 20h20 et 06h00, ce qui traduit bien l'impression d'activité continue tout au long de la nuit.

La totalité de l'activité est enregistrée pour des vitesses de vent inférieures à 11 m.s⁻¹, dont 90% de cette activité pour des vitesses de vent inférieures à 6 m.s⁻¹. Un pic d'activité a été enregistré pour une vitesse de vent de 3 m.s⁻¹.

La totalité de l'activité est enregistrée pour des températures comprises entre 7°C et 32°C, dont 90% de cette activité pour des températures supérieures à 12°C. Un pic d'activité a été enregistré pour une température de 18°C.

L'impact du parc éolien de Croquettes est faible sur la population de Pipistrelle commune puisque sous CROQ-03, un cadavre a été retrouvé ce qui représente 0,5 % de la population recensée sur le parc éolien. En revanche, l'impact du parc éolien n'est pas négligeable sur la population de Pipistrelle de Nathusius puisque sous CROQ-03, un cadavre a été retrouvé ce qui représente 8,6 % de la population recensée aux abords de l'éolienne CROQ-03.

VI. Régulation pour la préservation des chiroptères - ProBat

VI.1. Présentation de la régulation ProBat

Le système ProBat développé par Sens Of Life permet de réguler pertinemment les éoliennes pour préserver les chiroptères. Cet outil est fondé sur un risque de collision calculé à partir de :

- L'activité théorique des chiroptères modélisée selon un algorithme multifactoriel prenant en compte les paramètres météorologiques relevés sur le parc, la date et l'heure ;
- L'activité détectée en temps réel par un enregistreur ultrasonore TrackBat ou par des caméras infrarouges avec leurs illuminateurs.

VI.1.1. Détermination de l'activité chiroptérologique théorique

Eva Schuster et ses co-auteurs ont publié, en 2015, un travail synthétisant les différents facteurs pouvant influencer le comportement et la mortalité des chauves-souris sur les parcs éoliens. Ce travail liste les différents travaux proposant des informations plus ou moins contradictoires. De manière consensuelle, il apparait que 3 facteurs, listés ci-dessous influencent l'activité des chauves-souris :

Les variations journalières

Bien sûr les chauves-souris volent essentiellement de nuit, mais cette activité n'est pas pour autant régulière tout au long de la nuit. Des vols sont régulièrement observés de jour, notamment lors des migrations. La Figure 27 illustre la répartition de l'activité sur le parc éolien de Bouin en fonction de la date et de l'heure (Lagrange et al., 2009). Elle met en évidence de fortes variations au cours d'une même nuit, avec des pics d'activité généralement centrés sur le début de nuit et la fin de nuit. Sur un site donné, cette activité peut également être influencée par la distance que les animaux doivent parcourir entre leur gîte et le terrain de chasse.

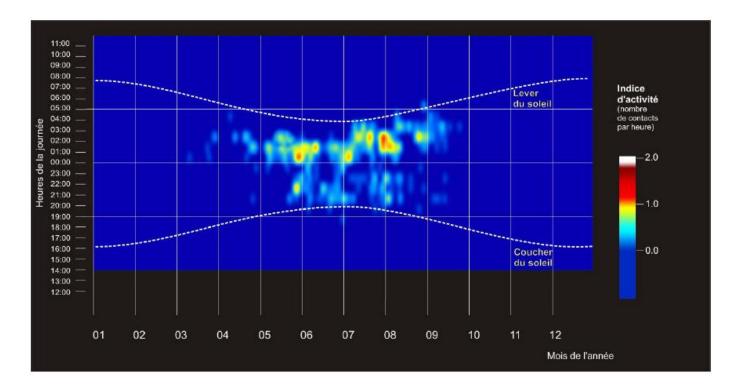
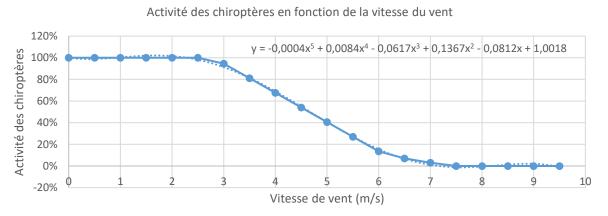


Figure 27 : Représentation de l'activité des chiroptères en fonction de la date et de l'heure sur le parc éolien de Bouin en 2009 (Lagrange et al., 2009)

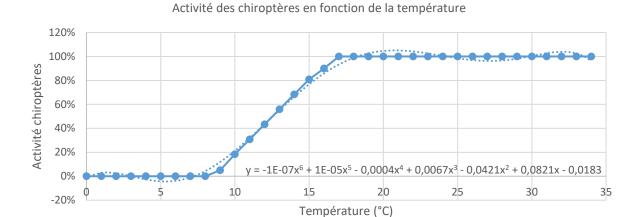
Les variations saisonnières

L'activité des chauves-souris, et les occurrences de mortalité, sont fortement influencées par les saisons (Figure 27). Sous nos latitudes, la plupart des espèces présentes sont des animaux hibernants, très peu actifs au cours des saisons défavorables. Les suivis post implantations montrent que l'essentiel de l'activité et de la mortalité est enregistré au cours de l'été et de l'automne (Arnett et al., 2006; Doty & Martin, 2013; Dürr, 2002; Hull & Cawthen, 2013). En 2010, Rydell et ses co-auteurs notaient que 90 % de la mortalité annuelle se produisait entre août et septembre. Cette répartition pourrait indiquer un rôle important des migrations dans la surmortalité constatée à partir du milieu de l'été (Johnson et al., 2011). Ces migrations peuvent aussi être des phénomènes à large échelle, les chauves-souris traversant une grande partie de l'Europe, comme ce qui est décrit pour la Pipistrelle de Nathusius. Elles peuvent aussi résulter de mouvements liés à des formations paysagères ou des régions (Kerns et al., 2005). Ces migrations automnales peuvent s'étaler sur de longues périodes, peut-être à des altitudes plus basses que les migrations printanières (Furmankiewicz & Kucharska, 2009). L'élévation du niveau de mortalité pendant ces épisodes migratoires pourraient simplement découler de la présence d'un plus grand nombre d'individus, mais aussi de comportements particuliers (poursuites) liées aux parades et affrontements lors de la formation de couples et à la reproduction (Cryan & Brown, 2007).


La météorologie

L'activité et la mortalité des chauves-souris sont fortement influencées par les variables climatiques (Baerwald & Barclay, 2011). Ces paramètres peuvent être utilisés pour prédire les périodes de fort risque de collision, servant de cadre de travail pour les protocoles de régulation du fonctionnement des éoliennes en vue de diminuer l'impact des parcs éoliens sur les chiroptères (Brinkmann, 2011). Les paramètres les plus influents sont la vitesse du vent, la température et le niveau de précipitation (Behr et al., 2011). La pression atmosphérique pourrait également jouer un rôle dans les variations d'activité des chiroptères (Kerns et al., 2005), tout comme l'illumination apportée par la lune (Baerwald & Barclay, 2011; Cryan et al., 2014).

Ces paramètres affectent différemment les espèces, cependant, les variations de vitesse de vent constituent un paramètre influençant fortement l'activité des chauves-souris (Baerwald & Barclay, 2011; Behr *et al.*, 2011). Certains auteurs (Arnett *et al.*, 2006; Rydell, 2006) décrivent que l'activité des chauves-souris décroit de 5 à 40 % pour chaque augmentation de la vitesse du vent d'un mètre par seconde. En 2010, Rydell et ses co-auteurs ont synthétisé ces résultats de la manière suivante :


- Activité maximale des chiroptères pour des vitesses de vent comprises entre 0 et 2 m.s⁻¹,
- Déclin de l'activité des chiroptères pour des vitesses de vent comprises entre 2 et 8 m.s⁻¹,
- Activité résiduelle des chiroptères très faible pour des vitesses de vent supérieures à 8 m.s⁻¹.

Ces données régulièrement collectées ont permis de modéliser la courbe d'activité en fonction de la vitesse de vent et de la température, dont les équations correspondantes sont affichées sur les graphiques suivants.

Graphique 12 : Modélisation de l'activité des chiroptères en fonction de la vitesse du vent

Graphique 13 : Modélisation de l'activité des chiroptères en fonction de la température

Ces équations permettent de définir les seuils permettant de préserver 90% des chiroptères. Cependant, l'application de seuils maximise les périodes d'arrêt alors que l'activité des chiroptères dépend des 4 facteurs -vent, température, date, heure- pondérés entre eux (Figure 28).

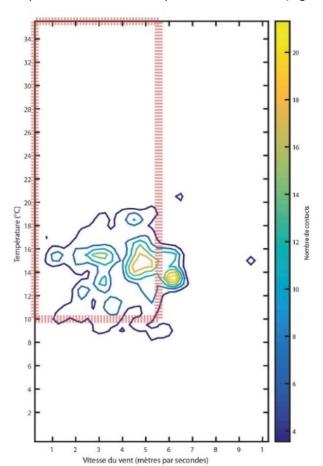


Figure 28 : Comparaison des temps d'arrêt pour un bridage sur seuils (6 m.s⁻¹ et 10°C, zone encadrée en rouge) avec l'activité chiroptérologique enregistrée (patatoïde bleu à jaune)

Les 2 équations, avec celles modélisant l'activtié des chauves-souris en fonction de la date et de l'heure forment un algorithme multifactoriel permettant de décrire le pourcentage global de l'actvité selon ces 4 paramètres. Cet algorithme permet de modéliser auplus près les variations d'activtié des chiroptères en fonction des 4 paramètres.

Il en résulte un risque allant de 0 à 100%, recalculée toute les minutes (sur la moyenne des données consultées toutes les 10 secondes sur le SCADA).

VI.1.2. Détermination de l'activité des chiroptères en temps réel

La Figure 29 permet de montrer l'activité des chiroptères non prise en compte par un bridage sur seuils. Il apparait donc important de vérifier le taux d'activité en temps réel pour réguler les éoliennes le plus pertinemment possible :

- Sans arrêt alors que l'activité est faible, mais que les paramètres météo sont favorables à l'activité,
- Avec des arrêts très ponctuels pour des pics d'activité (migration par exemple) de chiroptères ayant lieu lors de conditions météo défavorables.

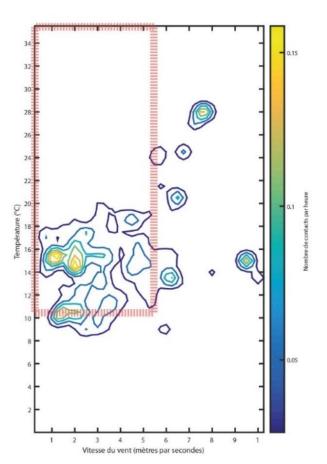


Figure 29 : Comparaison des temps d'arrêt pour un bridage sur seuils (6m.s⁻¹ et 10°C, zone encadrée en rouge) avec l'activité chiroptérologique protégée (patatoïde bleu à jaune)

Les sons détectés par le TrackBat en nacelle sont analysés automatiquement en temps réel et seul l'indice d'activité (nombre de contacts par minute toutes espèces confondues) est transmis vers le serveur Sens Of Life centralisant les risques. Il utilise cette donnée pour pondérer le risque de collision défini théoriquement par l'activité en temps réel dans l'objectif de préserver 90% des contacts de chiroptères enregistrés.

Ainsi, si durant les 60 dernières minutes, 6 minutes ont enregistré une activité de chiroptères, le risque dépasse alors 10% et l'éolienne est mise à l'arrêt. Cette moyenne est glissante sur la durée.

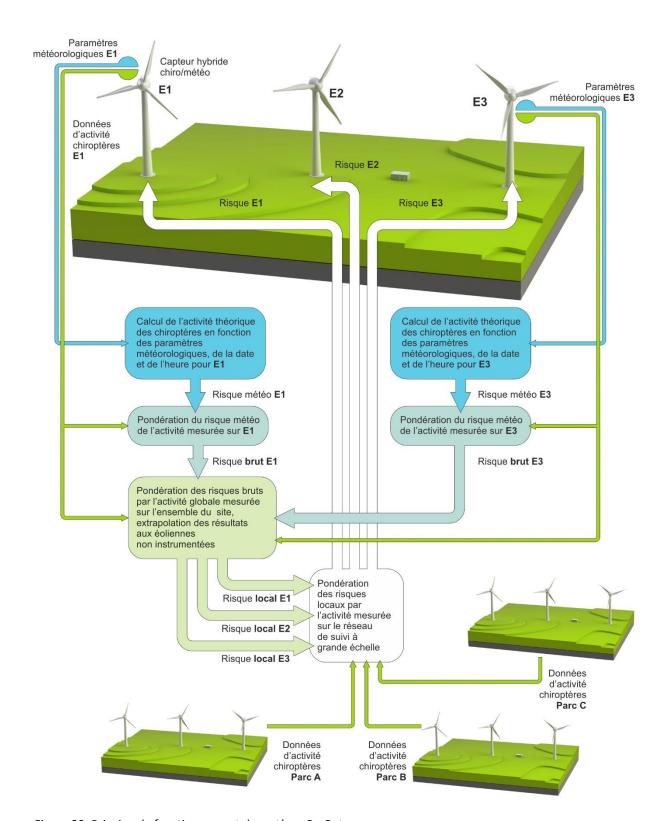


Figure 30: Principe de fonctionnement du système ProBat

VI.1.3. Arrêts machines sur CROQ-03 du parc de Croquettes pour la préservation des chiroptères

L'activité chiroptérologique a été analysé précédemment dans le rapport, et il a été vu qu'elle se répartit aux abords de CROQ-03 selon la distribution temporelle représentée dans la Figure 31.

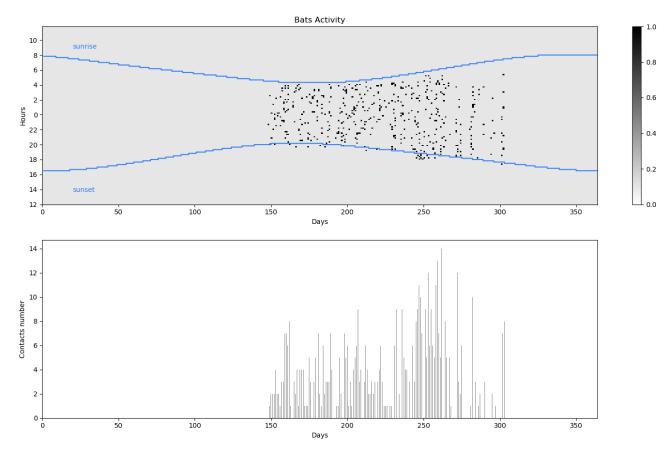


Figure 31 : Répartition de l'activité des chiroptères du 26/08/2020 au 31/10/2020 sur CROQ-03 en fonction de la date et de l'heure sur le parc éolien de Croquettes

La combinaison de la régulation prédictive et de la régulation fondée sur la détection des chiroptères en temps réel a abouti à la réalisation de 1408 plages d'arrêt de 10 minutes, représentant un temps d'arrêt total de 235 heures, soit environ 30 % du temps nocturne entre le 26 août et le 31 octobre 2020. 72 % des arrêts machines se produisent pour des vitesses de vent majoritairement inférieures à 6 m.s⁻¹, les 28% restant se produisant pour des vitesses de vent entre 7 et 11 m.s⁻¹.

Les arrêts ProBat sont déclenchés lorsque les conditions météorologiques et/ou l'activité des chiroptères détectée en temps réel présente un risque de collision important.

Ainsi, il est possible de savoir pour quelles espèces les arrêts ont été déclenchés. Il apparait ici que le nombre d'arrêts déclenchés par espèce suit presque les mêmes proportions que l'activité détectée par le TrackBat. Pour la Pipistrelle de Nathusius, la Noctule de Leisler et la Sérotine commune, la fréquence d'arrêt est égale à l'activité de ces espèces. Une légère différence apparait pour la Pipistrelle commune pour laquelle la fréquence d'arrêts est plus importante par rapport à l'activité de cette espèce. Inversement, la Pipistrelle de Kuhl et la Noctule commune déclenchent un peu moins d'arrêts par rapport à leur pourcentage d'activité, mais aucune mortalité pour ces 2 espèces n'a été relevée au sol.

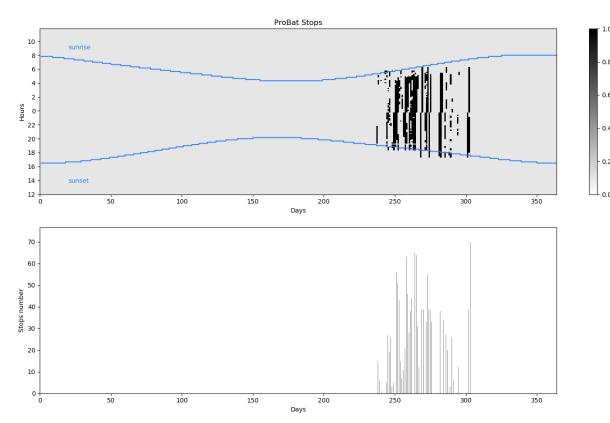


Figure 32 : Arrêts ProBat du 26 août au 31 octobre 2020 sur CROQ-03

Pipistrelle commune Pipistrelle de Nathusius Pipistrelle de Kuhl Noctule commune Noctule de Leisler

■ Sérotine commune

Arrêts ProBat en fonction des espèces contactées

Graphique 14 : Répartition des arrêts ProBat en fonction des espèces contactées

VI.2. Evaluation du risque résiduel

Pendant la période de régulation, 28 passages cumulés de chauves-souris ont été détectés alors que l'éolienne CROQ-03 était en fonctionnement. Rapporté aux 268 passages enregistrés sur cette éolienne et cette période, la régulation a donc été active pendant 90% des passages enregistrés sur le parc éolien.

La soustraction du nombre de Stops à l'activité chiroptérologique (Graphique 15) met en lumière les contacts à risque. Cette répartition temporelle des passages de chauves-souris alors que les rotors des éoliennes étaient encore en rotation est représentée en Figure 33.

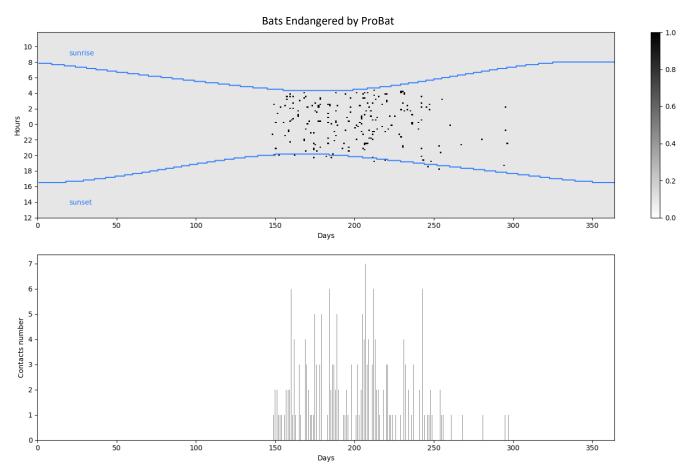
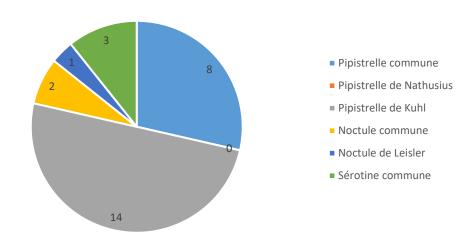


Figure 33 : Activité des chauves-souris alors que le rotor de CROQ-03 tournait

Il faut garder en tête que suite à l'envoi de la commande STOP du système de bridage à l'éolienne, il faut en moyenne une trentaine de secondes pour que la vitesse du rotor atteigne 2 tours/min, puis 1 minute et 30 secondes pour un arrêt complet de la machine. Ce temps dépend des types de machine. Cette vitesse de 40 km/h en bout de pale est considérée comme suffisante pour réduire significativement le risque de collision.

Il est possible d'évaluer le ratio entre le nombre de passages et la mortalité résiduelle en gardant à l'esprit qu'il s'agit d'une évaluation, extrapolée à partir de mesures réalisées sur des parcs équipés d'éoliennes de gabarit similaire, mais au cours d'années antérieures.

La détection ne couvre pas tout le volume brassé par les pales. Pour une pipistrelle, la distance de détection (30 m) et la longueur des pales (35 m) laissent envisager que les 5 derniers mètres ne sont pas suivis, ce qui explique la non-détection de la Pipistrelle de Nathusius trouvée au sol le 07/09/2020 sous CROQ-03 alors qu'aucun contact à risque


38

n'a été enregistré. Inversement, le disque parcouru par les pales à au plus une épaisseur de 5 mètres alors que le volume de détection est beaucoup plus important.

Le Graphique 15 présente le nombre de contacts à risque par espèce de chiroptère sur l'éolienne CROQ-03.

Nombre de contacts par espèces lorsque CROQ-03 fonctionnait

Graphique 15 : Nombre de contacts à risque résiduel par espèces aux abords de CROQ-03.

Les études réalisées avec des caméras thermiques en 2015 (une éolienne dans la Province du Hainaut - 7 interactions sur 352 passages soit 2 %), une éolienne dans la province de Namur – 6 interactions sur 295 passages soit 2 %) et en 2016 (une éolienne dans la province de Namur 5 interactions sur 307 passages soit 1,6 %) laissent penser que le risque de collision est de 0.0210 +/- 0.0016 par passage. Le nombre de passages résiduels est de 28 contacts sur CROQ-03. La mortalité résiduelle peut alors être évaluée à environ 0,6 +/- 0,045 chauves-souris par éolienne et par an. Ces chiffres sont bien inférieurs aux chiffres de mortalité attendus retrouvés dans la bibliographie pour ce type de milieu.

VII. Discussion

VII.1. Répartition de l'activité des chiroptères sur le parc éolien de Croquettes

Avec un total de 404,28 contacts corrigés, six espèces patrimoniales et sensibles à l'éolien ont été identifiées en altitude :

- La Pipistrelle commune (Pipistrellus pipistrellus) représente 40,6 % des contacts ;
- La **Pipistrelle de Kuhl** (*Pipistrellus kuhlii*) représente 34,4 % des contacts ;
- La **Sérotine commune** (*Eptesicus serotinus*) représente 9,7 % des contacts ;
- La **Noctule commune** (*Nyctalus noctula*) représente 7,4 % des contacts ;
- La **Noctule de Leisler** (*Nyctalus leisleri*) représente 5,4 % des contacts ;
- La **Pipistrelle de Nathusius** (*Pipistrellus nathusii*) représente 2,5 % des contacts.

Au cours de l'était initial, quatre espèces de chiroptères différentes ont été recensées au sol sur la Zone d'Implantation Potentielle : la Pipistrelle commune, la Sérotine commune, la Noctule commune et la Noctule de Leisler. L'étude de l'activité des chiroptères en altitude a permis de mettre en évidence la présence de la Pipistrelle de Kuhl, la Pipistrelle de Nathusius et la Noctule commune. Ces six espèces sont donc les mêmes retrouvées au cours de l'étude des chiroptères en altitude par TrackBat.

Un pic d'activité a été enregistré début septembre 2020, correspondant à la période de transition et d'accouplement des chiroptères (Figure 34). A l'échelle d'une nuit, le pic d'activité se situe à 23h30. Plus de 90% de l'activité chiroptérologique du site se déroule pour des vitesses de vent inférieures à 6 m.s⁻¹ et pour des températures supérieures à 12°C.

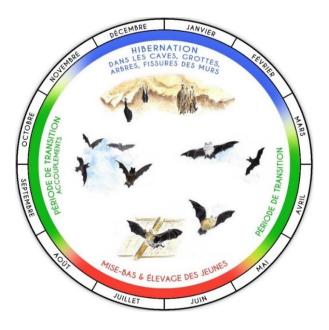


Figure 34 : Cycle biologique des chiroptères, LPO Touraine

En raison de la forte proportion de cette espèce parmi les espèces de chiroptères présentes, une attention particulière doit être portée sur la Pipistrelle commune, qui est également l'espèce la plus impactée par les éoliennes (Dürr, 2020).

VII.2. Suivi de la mortalité sur le parc éolien de Croquettes

VII.2.1. Comparaison des impacts avifaunistiques avec l'étude d'impact initiale

L'étude d'impact, réalisée par l'association Nature 18 en 2005, avait souligné l'importance du site pour les espèces suivantes : l'Œdicnème criard (Burhinus oedicnemus), le Busard Saint-Martin (Circus cyaneus), la Caille des blés (Coturnix coturnix), la Traquet motteux (Oenanthe oenanthe) et le Tarier des prés (Saxicola torquata). Une attention particulière doit être portée sur la Grue cendrée, dont le Cher fait partie de son couloir de migration.

Le suivi de mortalité a permis de retrouver un cadavre de Faucon crécerelle le 27 juillet 2020 sous CROQ-02. Le Faucon crécerelle est une espèce commune et plutôt abondante sur le site et possède une note de risque élevée (3/4,5). La mortalité réelle estimée varie **entre 0,5 et 5,1** oiseaux tués par éolienne sur le parc éolien de Croquettes, sur la période étudiée (mai à octobre 2020). Le parc éolien de Croquettes présente donc une mortalité conforme aux chiffres annoncés par Marx (2017).

VII.2.2. Comparaison des impacts chiroptérologiques avec l'étude d'impact initiale

Enfin, concernant les chiroptères, l'étude d'impact réalisée en 2005 a mis en évidence la présence de six espèces : la Pipistrelle commune, la Pipistrelle de Kuhl, la Pipistrelle de Nathusius, la Sérotine commune, la Noctule commune et la Noctule de Leisler. L'étude d'impact avait estimé que le parc éolien présentait un risque acceptable pour les chiroptères.

Une étude réalisée par Biotope en 2017 a montré une mortalité élevée des chiroptères sur le parc éolien de Croquettes, ce qui a conduit à la mise en place d'un Arrêté préfectoral complémentaire en 2019, préconisant l'arrêt des machines selon les conditions suivantes :

- Du 1er août au 31 octobre inclus;
- Vitesse de vent inférieure à 6 m/s ;
- Précipitations inférieures à 0,2 mm/h;
- Température supérieure à 10 °C;
- Dès le coucher du soleil et sur la nuit entière.

Cependant, 5 Pipistrelles de Nathusius et 5 Pipistrelles communes ont été retrouvées mortes par barotraumatisme sous chacune des éoliennes du parc de Croquettes, lors des suivis de mortalité au sol, entre mai et octobre 2020. Ces deux possèdent une note de risque très élevée (3,5/4,5). La mortalité réelle estimée varie entre 8,6 et 11,8 chiroptères tués par éolienne sur le parc éolien de Croquettes, sur la période étudiée (mai à octobre 2020). Le parc éolien de Croquettes présente donc une mortalité plus élevée que les chiffres annoncés par Rydell *et al.* (2010) malgré la mise en place des arrêts machine.

Il se peut que les chiroptères utilisent la Vallée de l'Yèvre située à l'est de la zone d'étude ou du Cher à l'Ouest comme zone de chasse, ainsi que la Forêt de Bourran, les Bois de Quincy et de Galembert situés à l'Ouest de la zone d'étude comme site de repos/reproduction. La Pipistrelle de Nathusius étant une espèce migratrice, elle pourrait utiliser ces continuités écologiques pour se déplacer pendant la migration.

VII.3. Comparaison mortalité et activité chiroptérologique

Au cours du suivi de la mortalité réalisé entre mai et octobre 2020, 10 cadavres de chiroptères ont été retrouvés dont 5 cadavres de Pipistrelle commune et 5 cadavres de Pipistrelle de Nathusius.

Les cadavres de Pipistrelles communes ont été retrouvés :

- Le 15/06/2020 sous CROQ-01 et CROQ-03 et la nuit précédant le suivi, seul un contact de Pipistrelle commune a été enregistré sous CROQ-03. La régulation ProBat n'était pas encore effective ;
- Le 03/07/2020 sous CROQ-05, sachant que la nuit du 02 au 03/07/2020 deux contacts ont été enregistrés sous CROQ-03. La régulation ProBat n'était pas encore effective ;
- Le 21/08/2020 sous CROQ-01, la nuit précédant le suivi, deux contacts de Pipistrelle commune ont été enregistrés sous CROQ-03. La régulation ProBat n'était pas encore effective ;
- Le 11/09/2020 sous CROQ-04, sachant qu'au cours de la nuit précédant le suivi, quatre contacts de cette espèce ont été enregistrés. Le module ProBat étant fonctionnel à cette date, il se peut que la distance de cet individu n'ait pas permis sa détection par le TrackBat. Il est également possible que le temps que la commande STOP soit envoyée, l'individu était déjà au niveau des pales, ce qui n'a pas permis d'éviter la collision. En effet, la nuit de 10/09 au 11/09/2020, 30 arrêts machine ont eu lieu, dont 2 arrêts correspondent exactement à 2 contacts de Pipistrelle commune (à 22h00 et 04h10).

L'impact du parc éolien est faible sur la population de Pipistrelle commune puisque sous CROQ-03, un cadavre a été retrouvé ce qui représente 0,5 % de la population recensée aux abords de cette même éolienne.

Les cadavres de Pipistrelles de Nathusius ont été retrouvés :

- Le 18/05/2020 sous CROQ-01, Le TrackBat n'était pas encore en place ;
- Le 15/06/2020 sous CROQ-04 et le 19/06/2020 sous CROQ-01 alors que le premier contact de Pipistrelle de Nathusius au niveau de CROQ-03 n'a été enregistré que le 23/06/2020. La régulation ProBat n'était pas encore effective;
- Le 07/09/2020 sous CROQ-03 et le 11/09/2020 sous CROQ-02, alors que les deux précédents contacts de l'espèce remontent au 03/09/2020 sous CROQ-03. La régulation ProBat était effective à ces deux dates : ces deux individus n'ont probablement pas été détectés par le TrackBat comme l'attestent les derniers contacts de l'espèce.

L'impact du parc éolien n'est donc pas négligeable sur la population de Pipistrelle de Nathusius puisque sous CROQ-03, un cadavre a été retrouvé ce qui représente 8,6 % de la population recensée aux abords de cette éolienne.

Pour rappel, la détection ne couvre pas tout le volume brassé par les pales. Pour une pipistrelle, la distance de détection (30 m) et la longueur des pales (35 m) laissent envisager que les 5 derniers mètres ne sont pas suivis, ce qui peut expliquer les 3 cadavres de chiroptères retrouvés alors que le module ProBat était en fonctionnement.

La régulation des éoliennes par ProBat du 26/08/2020 au 31/10/2020 a permis la préservation de 90 % des chiroptères sur CROQ-03 sur cette même période. La mortalité résiduelle est estimée à 0,6 chiroptères/éolienne sur la période de régulation. Ces chiffres sont bien inférieurs aux chiffres de mortalité attendus retrouvés dans la bibliographie pour ce type de milieu.

VIII. Conclusion

Pendant la durée de l'étude, sur l'ensemble du parc éolien de Croquettes, environ 90 % de l'activité chiroptérologique a été caractérisée par les paramètres suivants :

- Entre le 07 juin et le 09 octobre 2020
- Entre 20h20 et 06h00,
- Pour une vitesse de vent inférieure à 6 m.s⁻¹,
- Pour une température supérieure à 12°C.

La mortalité réelle estimée des chiroptères sur le parc éolien de Croquettes est supérieure aux chiffres annoncés dans la bibliographie et pour des espèces considérées comme particulièrement vulnérables sur ce site : la Pipistrelle commune et la Pipistrelle de Nathusius. Ces espèces sont inscrites en annexe IV de la Directive Habitats, en annexe II de la Convention de Bonn, ainsi qu'en annexe I de la Directive EUROBATS. La Pipistrelle commune est également en annexe III de la Convention de Berne. Au niveau national, ces espèces sont considérées comme « Quasi-menacées ». A l'échelle de la région Centre-Val de Loire, la Pipistrelle commune et la Pipistrelle de Nathusius sont considérées comme « quasi-menacées ». Ces deux espèces sont très vulnérables face au risque de collision avec les éoliennes : elles obtiennent une note de risque de 3,5/4,5. Nous rappelons qu'en termes de mortalité due aux éoliennes, la Pipistrelle commune comptabilise 995 cas de mortalité en France et la Pipistrelle de Nathusius 272 cas (Dürr, 2020).

Une mesure de réduction d'impact, la régulation ProBat, a été mise en place le 26 aout 2020. La solution système ProBat est basée sur :

- 1) Une régulation prédictive définissant un indice d'activité théorique sur la base de l'analyse des conditions environnementales ;
- 2) Et une régulation réactive basée sur la mesure de l'activité des chiroptères, en temps réel, à hauteur de fonctionnement des éoliennes ; et une analyse coopérative, synthèse de l'activité des chauves-souris, à large échelle, en temps réel.

ProBat permet à la fois d'obtenir une importante réduction de la mortalité des chiroptères induite par le fonctionnement des éoliennes (à minima 90 %), tout en limitant la fréquence et la durée des arrêts, donc en préservant au mieux la production des machines. Avant sa mise en place, ce sont 7 cadavres de chiroptères qui ont été recensés, contre 3 cadavres après la mise en fonctionnement du module. Active du 26/08/2020 au 31/10/2020, cette régulation a déjà permis la préservation de 240 chiroptères sur les 268 contactés, représentant 90 % des chiroptères préservés sur l'ensemble du parc éolien, ce qui démontre bien la pertinence du bridage. Les 28 passages à risques détectés représentent donc 10 % des chiroptères enregistrés sur le parc éolien de Croquettes, permettant de ramener à 0,6 +/- 0,045 chauves-souris potentiellement tuées par éoliennes, ce qui est bien inférieur aux chiffres de mortalité attendus retrouvés dans la bibliographie pour ce type de milieu. Nous préconisons d'étendre la régulation ProBat du 1^{er} juin au 15 octobre à partir de 2021 afin de couvrir la majorité de la période d'activité des chiroptères, permettant ainsi la préservation conjointe et optimisée à la fois des chiroptères et du productible.

Dans le cadre de la législation des ICPE, nous préconisons un prochain suivi environnemental en 2030, conforme au protocole ministériel en vigueur, et comprenant à minima un suivi d'activité chiroptérologique en nacelle et un suivi de mortalité de 20 recherches entre les semaines 20 et 43.

En effet, les surfaces sont difficilement prospectables sous les éoliennes (en moyenne prospectable à 57 % en 2020) et la prédation est importante (temps de séjour moyen d'un cadavre estimé à 3,81 jours et le taux de persistance au deuxième jour estimé à 44 %); les estimations de la mortalité réelle sont fortement biaisées. L'évaluation de l'efficacité du bridage ProBat via l'horodatage des contacts de chiroptères, mis en parallèle des périodes d'arrêt des éoliennes permet d'analyser le nombre de contacts à risque. Cette solution a ainsi démontré son efficacité et sa pertinence, puisqu'elle a permis la préservation de 90 % des chiroptères sur ce parc, ramenant la mortalité à 0,6 +/-0,045 chauves-souris potentiellement tuées par éoliennes. Le parc éolien de Croquettes étant équipé de ProBat en 2021, il ne sera donc pas nécessaire de réaliser un suivi au sol en 2021. Le suivi d'activité en altitude permettra de mettre en évidence le nombre de chauve-souris protégées et celles « à risque », tout en s'affranchissant des biais observateur et prédation.

IX. Bibliographie

- ADEME. (1999). Guide du porteur de projet de parc éolien. (ADEME Edition).
- Albouy, S., Clément, D., Jonard, A., Massé, P., Pagès, J.-M., & Nea, P. (1997). Suivi ornithologique du parc éolien de Port-la-Nouvelle : Rapport final. (p. 67). Abiès, Géokos consultants, LPO Aude.
- Albouy, S., Dubois, Y., Picq, H., Picq, H., Aude, L., & Neau, P. (2001). Suivi ornithologique des parcs éoliens du plateau de Garrigue Haute (Aude)—Résultats 2006-2009 (p. 76). LPO Aube et Abies. http://aude.eolienne.free.fr/fichiers/SuiviOrnitho.pdf
- Alcalde, J. T. (2003). Impacto de los parques eólicos Sobre las poblaciones de murciélagos. Temas, 3-6.
- Allouche, L., AVES environnement, & Groupe Chiroptères de Provence. (2010). Etude de la mortalité des chiroptères.

 Parc éolien du Mas de Leuze, Saint-Martin-de-Crau (13). (p. 1-31). Energie du Delta.
- Anderson, R. L., Strickland, D., Tom, J., Neumann, N., Erickson, W., Cleckler, J., Mayorga, G., Nuhn, G., Leuders, A., Schneider, J., Backus, L., Becker, P., & Flagg, N. (2001). *Avian monitoring and risk assessment at Tehachapi Pass and San Gorgonio Pass wind resource areas, California: Phase 1 Preliminary Results.* 16.
- Arnett, E. B., Hayes, J., & Huso, M. M. (2006). An evaluation of the use of acoustic monitoring to predict bat fatality at a proposed wind facility in southcentral Pennsylvania. An annual report submitted to the bats and wind energy cooperative.
- Arthur, L., & Lemaire, M. (2009). *Les chauves-souris de France, Belgique, Luxembourg et Suisse.* (Publications scientifiques du muséum). Biotope édition.
- Arthur, L., & Lemaire, M. (2015). Les Chauves-souris de France, Belgique, Luxembourg et Suisse, Deuxième édition. (Publication scientifique du muséum). Biotope édition.
- Aschwanden, J., Stark, H., Peter, D., Steuri, T., Schmid, B., & Liechti, F. (2018). Bird collisions at wind turbines in a mountainous area related to bird movement intensities measured by radar. *Biological Conservation*, 220, 228-236. https://doi.org/10.1016/j.biocon.2018.01.005
- Bach, L. (2001). Fledermäuse und Windenergienutzung—Reale Probleme oder Einbildung? *Vogelkundliche Berichte aus Niedersachsen*, *33*, 119-124.
- Bach, L., Brinckmann Robert, Limpens Herman, Rahmel Ulf, Reichenbach, M., & Roschen Axel. (1999). Bewertung und planerische umsetzung von fledermausdaten im rahmen der windkraftplanung. *Bremer Beitraege für Naturkunde und Naturshutz, Themenheft « Voegel und Windkraft »*(Band 4), 163-170.
- Baerwald, E.F., & Barclay, R. M. R. (2011). Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. 75: 1103-1114. https://doi.org/10.1002/jwmg.147
- Baerwald, Erin F., & Barclay, R. M. R. (2009). Geographic variation in activity and fatality of migratory bats at wind energy facilities. *Journal of Mammalogy*, *90*(6), 1341-1349. https://doi.org/10.1644/09-MAMM-S-104R.1
- Baerwald, Erin F., D'Amours, G. H., Klug, B. J., & Barclay, R. M. R. (2008). Barotrauma is a significant cause of bat fatalities at wind turbines. *Current Biology*, 18(16), R695-R696. https://doi.org/10.1016/j.cub.2008.06.029
- Barré, K. (2018). Estimating habitat loss due to wind turbine avoidance by bats_ Implications for European siting guidance. *Biological Conservation*, 10.
- Barrios, L., & Rodríguez, A. (2004). Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines: Bird mortality at wind power plants. *Journal of Applied Ecology*, *41*(1), 72-81. https://doi.org/10.1111/j.1365-2664.2004.00876.x
- Bastos, R., Santos, M., & Cabral, J. A. (2013). A new stochastic dynamic tool to improve the accuracy of mortality estimates for bats killed at wind farms. *Ecological Indicators*, *34*, 428-440. https://doi.org/10.1016/j.ecolind.2013.06.003
- Behr, O., Brinckmann, R., Niermann, I., & Korner-Nievergelt, F. (2011).). Akustische Erfassung der Fledermausaktivität an Windenergieanlagen. Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen. 4: 177-286.
- Bennett, V. J., & Hale, A. M. (2014). Red aviation lights on wind turbines do not increase bat-turbine collisions: Bats are not attracted to aviation lighting. *Animal Conservation*, *17*(4), 354-358. https://doi.org/10.1111/acv.12102

- Bennett, V. J., Hale, A. M., & Williams, D. A. (2017). When the excrement hits the fan: Fecal surveys reveal species-specific bat activity at wind turbines. *Mammalian Biology*, *87*, 125-129. https://doi.org/10.1016/j.mambio.2017.08.003
- Beucher, Y. (2020). Maîtrise des impacts éoliens sur les chauves-souris : Actions et stratégie du Groupe Technique éolien de la SFEPM. 7.
- Beucher, Y., Kelm, V., Geyelin, M., & Pick, D. (2011). *Réduction significative de la mortalité des chauves-souris liée aux éoliennes—Poster*.
- Beucher, Y., Langlois, A., Albespy, F., & Mounetou, R. (2017). Les pics d'activité des chauves-souris en plein ciel : Vers une nouvelle perception de la typologie des risques d'impacts éoliens. https://doi.org/10.13140/RG.2.2.20519.80803
- Brinkmann, R. (Éd.). (2011). Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen: Ergebnisse eines Forschungsvorhabens (1. Aufl). Cuvillier.
- Brinkmann, R., Schauer-Weisshahn, H., & Bontadina, F. (2006). *Untersuchungen zu möglichen betriebsbedingten Auswirkungen von Windkraftanlagen auf Fledermäuse im Regierungsbezirk Freiburg* (Projekt 0410 L; p. 66). Regierungspräsidium Freiburg.
- Cade, T. J. (1994). Industry Research: Kenetech Windpower. Wind Power, 156.
- Cieślak et Dul. (2006). Feather identification for bird conservation (Natura publishing house).
- Cornut, J., & Vincent, S. (2010). Suivi de la mortalité des chiroptères sur deux parcs éoliens du sud de la région Rhône-Alpes (p. 43). LPO Drôme.
- Cryan, P. M. (2008). Mating Behavior as a Possible Cause of Bat Fatalities at Wind Turbines. 72 (3), 845–849.
- Cryan, P. M., & Barclay, R. M. R. (2009). Causes of bat fatalities at wind turbines: Hypotheses and predictions. *Journal of Mammalogy*, *90*(6), 1330-1340. https://doi.org/10.1644/09-MAMM-S-076R1.1
- Cryan, P. M., & Brown, A. C. (2007). Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. *Biol. Conserv.*, 11.
- Cryan, Paul. M., Gorresen, P. M., Hein, C. D., Schirmacher, M. R., Diehl, R. H., Huso, M. M., Hayman, D. T. S., Fricker, P. D., Bonaccorso, F. J., Johnson, D. H., Heist, K., & Dalton, D. C. (2014). Behavior of bats at wind turbines. *Proceedings of the National Academy of Sciences*, 111(42), 15126-15131. https://doi.org/10.1073/pnas.1406672111
- Curry, R. C., & Kerlinger, P. (1998). Avian Mitigation Plan: Kenetech Model Wind Turbines, Altamont Pass WRA, California. 214.
- De Lucas, M., Janss, G. F. E., Whitfield, D. P., & Ferrer, M. (2008). Collision fatality of raptors in wind farms does not depend on raptor abundance. *Journal of Applied Ecology*, 45(6), 1695-1703. https://doi.org/10.1111/j.1365-2664.2008.01549.x
- Dietz, C., von Helversen, O., & Nill, D. (2009). L'encyclopédie des chauves-souris d'Europe et d'Afrique du nord Biologie, Caractéristiques, Protection. (Delachaux et Niestlé).
- Dirksen, S., Spaans, A. L., & Van der Winden, J. (2000). Studies on Nocturnal Flight Paths and Altitudes of Waterbirds in Relation to Wind Turbines: A Review of Current Research in The Netherlands. In: PNAWPPM III, Proceeding of the National Avian-Wind Power Planning Meeting III, San Diego, California, June 2000: 97-109.
- Dooling, R., & Lohr, B. (2000, mai). *The role of hearing in avian avoidance of wind turbines*. National Avian-Wind Power Planning Meeting IV, Carmel, California.
- Doty, A., & Martin, A. (2013). Assessment of bat and avian mortality at a pilot wind turbine at Coega, Port Elizabeth, Eastern Cape, South Africa. *New Zealand Journal of Zoology*, 40(1), 75-80. https://doi.org/10.1080/03014223.2012.741068
- DREAL. (2015). *Protocole de suivi environnemental des parcs éoliens terrestres*. Ministère de l'Écologie, de l'Énergie, du Développement durable et de la Mer.
- DREAL. (2018). *Protocole de suivi environnemental des parcs éoliens terrestres*. Ministère de l'Écologie, de l'Énergie, du Développement durable et de la Mer.
- DREAL Centre-Val de Loire. (2012). Liste rouge des chauves-souris de la région Centre-Val de Loire (2012).
- DREAL Centre-Val de Loire. (2013). Liste rouge des oiseaux nicheurs de la région Centre (2013). 5.
- Dubourg-Savage, M. (2004). Impacts des éoliennes sur les Chiroptères, de l'hypothèse à la réalité. Arvicola, XVI(2).

- Dulac, P. (2008). Evaluation de l'impact du parc éolien de Bouin (Vendée) sur l'avifaune et les chauves-souris Bilan des 5 années de suivi (p. 106). Ligue pour la Protection des Oiseaux délégation Vendée / ADEME Pays de la Loire / Conseil Régional des Pays de la Loire.
- Dürr, T. (2002). Fledermäuse als Opfer von Windkraftanlagen in Deutschland. Nyctalus, 8(2), 115-118.
- Dürr, T. (2020). Synthèse des bilans de suivi de la mortalité sous les éoliennes d'Europe, bilan de janvier 2020.
- Erickson, W. P., Johnson, G. D., & Young, D. P. J. (2005). A summary and comparison of bird mortality from anthropogenic causes with an emphasis on collisions. *USDA Forest Service Gen. Tech. Rep., PSW-GTR-191*, 14.
- Foo, C. F., Bennett, V. J., Hale, A. M., Korstian, J. M., Schildt, A. J., & Williams, D. A. (2017). Increasing evidence that bats actively forage at wind turbines. *PeerJ*, *5*, e3985. https://doi.org/10.7717/peerj.3985
- Furmankiewicz, J., & Kucharska, M. (2009). *Migration of bats along a large river valley in Southwestern Poland*. https://doi.org/90(6):1310–1317.
- Garvin, J. C., Jennelle, C. S., Drake, D., & Grodsky, S. M. (2011). Response of raptors to a windfarm: Raptor behaviour within a windfarm. *Journal of Applied Ecology*, 48(1), 199-209. https://doi.org/10.1111/j.1365-2664.2010.01912.x
- Gaultier, S. P., Blomberg, A. S., Ijäs, A., Vasko, V., Vesterinen, E. J., Brommer, J. E., & Lilley, T. M. (2020). Bats and Wind Farms: The Role and Importance of the Baltic Sea Countries in the European Context of Power Transition and Biodiversity Conservation. *Environmental Science & Technology*, *54*(17), 10385-10398. https://doi.org/10.1021/acs.est.0c00070
- Gaultier, S. P., Marx, G., & Roux, D. (2019). Éoliennes et biodiversité Synthèse des connaissances sur les impacts et les moyens de les atténuer (p. 120). LPO et Office national de la chasse et de la faune sauvage. https://eolien-biodiversite.com/IMG/pdf/lpo_oncfs_2019.pdf
- Gensbol, B. (2004). *Guide des rapaces diurnes d'Europe, d'Afrique du Nord et du Moyen-Orient* (Delachaux et Niestlé). Editions Delachaux et Niestlé.
- Groupe Chiroptères de la SFEPM. (2016). Suivis des impacts des parcs éoliens terrestres sur les populations de chiroptères—Actualisation 2016 des recommandations de la SFEPM. (Version 2; p. 17). Société Française pour l'Étude et la Protection des Mammifères (SFEPM).
- Grünkorn, T., Diederichs, A., Poszig, D., Diederichs, B., & Nehls, G. (2009). Wie viele Vogel kollidieren mit Windenergieanlagen? *Natur und Landschaft*, *84*(7), 309-314.
- Guyonne, J., & Clave, A. T. (2000). A study of bird behavior in a wind farm and adjacent areas in Tarifa (Spain); management considerations. Proc. Nat. Avian-Wind Power Planning Meeting III, San Diego.
- Hall, L. S., & Richards, G. C. (1972). Notes on Tadarida australis (Chiroptera: Molossidae). 46-47.
- Haquart, A., Christian, K., Aurélien, B., Luc, B., & Jocelyn, F. (2013). *Actichiro, référentiel d'activité des chiroptères.* Eléments pour l'interprétation des dénombrements de chiroptères avec les méthodes acoustiques en zone méditerranéenne française. École Pratique des Hautes Études.
- Heitz, C., & Jung, L. (2016). *Impact de l'activité éolienne sur les populations de chiroptères : Enjeux et solutions (Etude bibliographique)* (p. 149). Ecospère.
- Hernández-Pliego, J., de Lucas, M., Muñoz, A.-R., & Ferrer, M. (2015). Effects of wind farms on Montagu's harrier (Circus pygargus) in Southern Spain. *Biological Conservation*, 191, 452-458. https://doi.org/10.1016/j.biocon.2015.07.040
- Hill, R., Hill, K., Aumüller, R., Schulz, A., Dittmann, T., Kulemever, C., & Coppack, T. (2014). Of birds, blades and barriers: Detecting and analyzing mass migration events at alpha ventus. In: Federal Maritime and Hydrographic Agency, Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (eds.) Ecological Research at the Offshore Windfarm alpha ventus, Springer Fachmedien, Wiesbaden 2014. 111-131.
- Horn, J. W., Arnett, E. B., & Kunz, T. H. (2008). Behavioral responses of bats to operating wind turbines. *Journal of Wildlife Management*, 72(1), 123-132. https://doi.org/10.2193/2006-465
- Hötker, H., Thomsen, K.-M., & Jeromin, H. (2006). *Impacts on biodiversity of exploitation of renewable energy sources: The example of birds and bats—Facts, gaps in knowledge, demands for further research, and ornithological guidelines for the development of renewable energy exploitation.* Michael-Otto-Institut im NABU, Bergenhusen.

- Hull, C., & Cawthen, L. (2013). Bat fatalities at two wind farms in Tasmania, Australia: Bat characteristics, and spatial and temporal patterns. *New Zealand Journal of Zoology*, 40(1), 5-15. https://doi.org/10.1080/03014223.2012.731006
- Huso, M. M. P. (2010). An estimator of wildlife fatality from observed carcasses. *Environmetrics*, 22(3), 318-329. https://doi.org/10.1002/env.1052
- Itty, C., & Duriez, O. (2017). Le suivi par GPS, une méthode efficace pour évaluer l'impact des parcs éoliens sur des espèces à fort enjeux de conservation : L'exemple de l'aigle royal (Aquila chrysaetos) dans le sud du massif central. 42-48.
- James, R. D., & Coady, G. (2004). Bird monitoring at Toronto's exhibition place wind turbine. *Ontario Birds*, 22(2), 78-88.
- Johnson, G. D., Erickson, W. P., Dale Strickland, M., Shepherd, M. F., Shepherd, D. A., & Sarappo, S. A. (2003). Mortality of bats at a large-scale wind power development at Buffalo Ridge, Minnesota. *The American Midland Naturalist*, 150(2), 332-342. https://doi.org/10.1674/0003-0031(2003)150[0332:MOBAAL]2.0.CO;2
- Johnson, J. S., Watrous, K. S., Giumarro, G. J., Peterson, T. S., Boyden, S. A., & Lacki, M. J. (2011). Seasonal and Geographic Trends in Acoustic Detection of Tree-Roosting Bats. *Acta Chiropterologica*, *13*(1), 157-168. https://doi.org/10.3161/150811011X578705
- Johnston, N. N., Bradley, J. E., & Otter, K. A. (2014). Increased flight altitudes among migrating Golden Eagles suggest turbine avoidance at a rocky mountain wind installation. *PLoS ONE*, *9*(3), e93030. https://doi.org/10.1371/journal.pone.0093030
- Joiris, E. (2012, mars 24). High altitude bat monitoring [Preliminary results Hainaut & Ardennes]. CSD Ingénieurs.
- Jones, G., Cooper-Bohannon, R., Barlow, K., & Parsons, K. (2009). *Determining the potential ecological impact of wind turbines on bat populations in Britain* [Scoping and method development report]. University of Bristol, Bat Conservation Trust.
- Kerlinger, P., Gehring, J. L., Erickson, W. P., Curry, R., Jain, A., & Guarnaccia, J. (2010). Night migrant fatalities and obstruction lighting at wind turbines in North America. *The Wilson Journal of Ornithology*, 122(4), 744-754. https://doi.org/10.1676/06-075.1
- Kerns, J., Erickson, W. P., & Arnett, E. B. (2005). Bat and bird fatality at wind energy facilities in Pennsylvania and West Virginia, chapter 2:24–95. In: Arnett EB (tech. Ed.): Relationships between bats and wind turbines in Pennsylvania and West Virginia: An assessment of fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines.
- Kingsley, A., & Whittam, B. (2001). *Potential impacts of wind turbines on birds at North Cape, Prince Edward Island* (p. 33). Bird Studies Canada, Atlantic Region.
- Kreuziger, J. (2008). Kulissenwirkung und Vögel. Methodische Rahmenbedingungen für die Auswirkungsanalyse in der FFH-VP. Vilmer Expertentagung.
- Kunz, T. H., Arnett, E. B., Erickson, W. P., Hoar, A. R., Johnson, G. D., Larkin, R. P., Strickland, M. D., Thresher, R. W., & Tuttle, M. D. (2007). Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. Frontiers in Ecology and the Environment, 5(6), 315-324. https://doi.org/10.1890/1540-9295(2007)5[315:EIOWED]2.0.CO;2
- Lagrange, H., Roussel, E., Anne-Lise Ughetto, Boulnois, R., Haquart, A., & Melki, F. (2009). *Chirotech Bilan des tests d'asservissement sur le parc de Bouin—2009*. Ecosphère. http://rgdoi.net/10.13140/RG.2.2.10316.21129
- Langston, R., & Pullan, J. (2003). Windfarms and birds: An analysis of the effects of windfarms on birds, and guidance on environmental assessment criteria and site selection issues. *23rd Meeting*, 58.
- Larsen, J. K., & Madsen, J. (2000). Effects of wind turbines and other physical elements on field utilization by pink-footed geese (Anser brachyrhynchus): A landscape perspective. *Landscape Ecology*, *15*(8), 755-764. https://doi.org/10.1023/A:1008127702944
- Leddy, K. L., Higgins, K. F., & Naugle, D. E. (1999). Effects of wind turbines on upland nesting birds in conservation reserve program grasslands. *Wilson Bulletin*, 111(1), 100-104.
- Lekuona, J. M. (2001). *Uso del espacio por la avifauna y control de la mortalidad de aves y murcielagos en los parques eoucos de Navarra durante un ciclo anual* (p. 155). Direccion General de Medio Ambiante, Gobierno de Navarra.

- Lekuona, J. M., Ursua, C., Janss, G., & Ferrer, M. (2006). *Avian mortality in wind plants of Navarra (northern Spain). In : De Lucas M., Janss G. & Ferrer M. (eds). Birds and Wind Power.* (lynx Edicions).
- Loesch, C. R., Walker, J. A., Reynolds, R. E., Gleason, J. S., Niemuth, N. D., Stephens, S. E., & Erickson, M. A. (2013). Effect of wind energy development on breeding duck densities in the Prairie Pothole Region: Wind Energy and Breeding Ducks. *The Journal of Wildlife Management*, 77(3), 587-598. https://doi.org/10.1002/jwmg.481
- Loss, S. R., Will, T., & Marra, P. P. (2015). Direct mortality of birds from anthropogenic causes. *Annual Review of Ecology, Evolution, and Systematics*, 46(1), 99-120. https://doi.org/10.1146/annurev-ecolsys-112414-054133
- Marques, A. T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M. J. R., Fonseca, C., Mascarenhas, M., & Bernardino, J. (2014). Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. *Biological Conservation*, *179*, 40-52. https://doi.org/10.1016/j.biocon.2014.08.017
- Marques, A. T., Santos, C. D., Hanssen, F., Muñoz, A., Onrubia, A., Wikelski, M., Moreira, F., Palmeirim, J. M., & Silva, J. P. (2020). Wind turbines cause functional habitat loss for migratory soaring birds. *Journal of Animal Ecology*, 89(1), 93-103. https://doi.org/10.1111/1365-2656.12961
- Marx, G. (2017). Le parc éolien français et ses impacts sur l'avifaune. Etude des suivis de mortalité réalisés en France de 1997 à 2015 (LN 1216-54). LPO France.
- May, R., Nygård, T., Falkdalen, U., Åström, J., Hamre, Ø., & Stokke, B. G. (2020). Paint it black: Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. *Ecology and Evolution*, *10*(16), 8927-8935. https://doi.org/10.1002/ece3.6592
- Millon, L., Colin, C., Brescia, F., & Kerbiriou, C. (2018). Wind turbines impact bat activity, leading to high losses of habitat use in a biodiversity hotspot. *Ecological Engineering*, 112, 51-54. https://doi.org/10.1016/j.ecoleng.2017.12.024
- Millon, L., Julien, J.-F., Julliard, R., & Kerbiriou, C. (2015). Bat activity in intensively farmed landscapes with wind turbines and offset measures. *Ecological Engineering*, *75*, 250-257. https://doi.org/10.1016/j.ecoleng.2014.11.050
- Minderman, J., Gillis, M. H., Daly, H. F., & Park, K. J. (2017). Landscape-scale effects of single- and multiple small wind turbines on bat activity. *Animal Conservation*, *20*(5), 455-462. https://doi.org/10.1111/acv.12331
- Moriguchi, S., Mukai, H., Komachi, R., & Sekijima, T. (2019). Wind farm effects on migratory flight of Swans and foraging distribution at their stopover site. In R. Bispo, J. Bernardino, H. Coelho, & J. Lino Costa (Éds.), *Wind Energy and Wildlife Impacts* (p. 125-133). Springer International Publishing. https://doi.org/10.1007/978-3-030-05520-2
- Morinha, F., Travassos, P., Seixas, F., Martins, A., Bastos, R., Carvalho, D., Magalhães, P., Santos, M., Bastos, E., & Cabral, J. A. (2014). Differential mortality of birds killed at wind farms in Northern Portugal. *Bird Study*, *61*(2), 255-259. https://doi.org/10.1080/00063657.2014.883357
- Osborn, R. G., Dieter, C. D., Higgins, K. F., & Usgaard, R. E. (1998). Bird flight characteristics near wind turbines in Minnesota. *The American Midland Naturalist*, 139(1), 29-38. https://doi.org/10.1674/0003-0031(1998)139[0029:BFCNWT]2.0.CO;2
- Osborn, R. G., Higgins, K. F., Dieter, C. D., & Usgaard, R. E. (1996). *Bat collisions with wind turbines in southwestern Minnesota*. *37*(4), 105-108.
- Pagel, J. E., Kritz, K. J., Millsap, B. A., Murphy, R. K., Kershner, E. L., & Covington, S. (2013). Bald Eagle and Golden Eagle mortalities at wind energy facilities in the contiguous United States. *Journal of Raptor Research*, 47(3), 311-315. https://doi.org/10.3356/JRR-12-00019.1
- Pearce-Higgins, J. W., Stephen, L., Douse, A., & Langston, R. H. W. (2012). Greater impacts of wind farms on bird populations during construction than subsequent operation: Results of a multi-site and multi-species analysis. *Journal of Applied Ecology*, 49(2), 386-394. https://doi.org/10.1111/j.1365-2664.2012.02110.x
- Percival, S. M. (1998). Birds and wind turbines—Managing potential planning issues. 345-350.
- Percival, S. M. (2001). Assessment of the effects of offshore wind farms on birds (DTI/Pub URN 01/1434; p. 96).
- Perret, M. (2017). Eolien et biodiversité: Prise en compte des enjeux relatifs à la biodiversité dans le cadre réglementaire français. 6.
- Puzen, S. C. (2002). Bat interactions with wind turbines in northeastern Wisconsin. *Wisconsin Public Service Corporation, Green Bay, USA*.

- Richardson, W. J. (1998). Bird migration and wind turbines: Migration timing, flight behavior, and collision risk. 214. Rico, P., & Lagrange, H. (2011). Chirotech Bilan des tests d'asservissement sur le parc du Mas de Leuze (commune de Saint Martin de Crau-13)—2011. Biotope. http://rgdoi.net/10.13140/RG.2.2.23108.83849
- Rico, P., & Lagrange, H. (2015). Etude de l'impact des parcs éoliens sur l'activité et la mortalité des chiroptères par trajectographie acoustique, imagerie thermique et recherche de cadavres au sol—Contributions aux évaluations des incidences sur l'environnement. (p. 174). Sens Of Life, DGO3, SPW.
- Rico, P., Lagrange, H., Cosson, E., & Allouche, L. (2012). *Bilan des tests d'asservissement sur le parc du Mas de Leuze (commune de Saint Martin de Crau-13)- 2012* (p. 67). Biotope.
- Riols-Loyrette, C. (2015). Impact de parcs éoliens sur un couple d'aigle royal Aquila chrysaetos dans les Corbières. *Ornithos*, *22*(4), 196-207.
- Roeleke, M., Blohm, T., Kramer-Schadt, S., Yovel, Y., & Voigt, C. C. (2016). Habitat use of bats in relation to wind turbines revealed by GPS tracking. *Scientific Reports*, 6(1), 28961. https://doi.org/10.1038/srep28961
- Roemer, C., Disca, T., Coulon, A., & Bas, Y. (2017). Bat flight height monitored from wind masts predicts mortality risk at wind farms. *Biological Conservation*, *215*, 116-122. https://doi.org/10.1016/j.biocon.2017.09.002
- Rydell, J. (2006). Bats and their insect prey at streetlights. 43-60.
- Rydell, J., Bach, L., Dubourg-Savage, M.-J., Green, M., Rodrigues, L., & Hedenström, A. (2010a). Bat mortality at wind turbines in Northwestern Europe. *Acta Chiropterologica*, *12*(2), 261-274. https://doi.org/10.3161/150811010X537846
- Rydell, J., Bach, L., Dubourg-Savage, M.-J., Green, M., Rodrigues, L., & Hedenström, A. (2010b). Mortality of bats at wind turbines links to nocturnal insect migration? *European Journal of Wildlife Research*, *56*(6), 823-827. https://doi.org/10.1007/s10344-010-0444-3
- Schuster, E., Bulling, L., & Köppel, J. (2015). Consolidating the state of knowledge: A synoptical review of wind energy's wildlife effects. *Environmental Management*, *56*(2), 300-331. https://doi.org/10.1007/s00267-015-0501-5
- Seiche, K. (2007). Fledermäuse und Windenergieanlagen in Sachsen 2006. (Naturschutz und Landschaftspflege). Freistaat Sachsen, Sächsisches Landesamt für Umwelt und Geologie.
- Shaffer, J. A., & Buhl, D. A. (2016). Effects of wind-energy facilities on breeding grassland bird distributions: Wind-energy effects on grassland birds. *Conservation Biology*, 30(1), 59-71. https://doi.org/10.1111/cobi.12569
- Smallwood, K. S. (2013). Comparing bird and bat fatality-rate estimates among North American wind-energy projects. *Wildlife Society Bulletin*, *37*(1), 19-33. https://doi.org/10.1002/wsb.260
- Smith, J. A., & Dwyer, J. F. (2016). Avian interactions with renewable energy infrastructure: An update. *The Condor*, 118(2), 411-423. https://doi.org/10.1650/CONDOR-15-61.1
- Strickland, M. D., Johnson, G., Erickson, W. P., & Kronner, K. (2001). *Avian studies at wind plants located at Buffalo Ridge, Minnesota and Vansycle Ridge, Oregon*. 38-52.
- Svensson, L., Mullarney, K., & Zetterström, D. (2015). Le Guide Ornitho (Delachaux et Niestlé).
- Thaxter, C. B., Buchanan, G. M., Carr, J., Butchart, S. H. M., Newbold, T., Green, R. E., Tobias, J. A., Foden, W. B., O'Brien, S., & Pearce-Higgins, J. W. (2017). Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. *Proceedings of the Royal Society B: Biological Sciences*, 284(1862), 20170829. https://doi.org/10.1098/rspb.2017.0829
- Thelander, C. G., & Rugge, L. (2000). Examining relationships between bird risk behaviors and fatalities at the Altamont wind resource area: A second year's progress report. 5-14.
- Thomas, R. (2000). An Assessment of the Impact of Wind Turbines on Birds at Ten Windfarm Sites in the UK. 215-219. Vogelwarte. (2016). Energie eolienne et protection des oiseaux.
- Whitfield, D. P., & Madders, M. (2006). A review of the impacts of wind farms on Hen Harriers Circus cyaneus and an estimation of collision avoidance rates. *Natural Research Ldt*, 33.
- Winkelman, J. E. (1985). Vogelhinder door middelgrote windturbines—Over vlieggedrag, slachtoffers en verstoring [Bird impact by middle-sized wind turbines on flight behaviour, victims, and disturbance]. *Limosa*, *58*, 117-121.
- Winkelman, J. E. (1992). De invloed van de Sep-proefwindcentrale te Oosterbierum (Fr.) op vogels. 1: Aanvaringsslachtoffers. [The impact of the Sep wind park near Oosterbierum (Fr.), The Netherlands, on birds, 1: Collision victims.] (RIN-rapport92/2; p. 144). DLO-Instituut voor Bos-en Natuuronderzoek.
- Winkelman, J. E. (1994). BirdlWind Turbine Investigations in Europe. Wind Power, 156.

Zeiler, H. P., & Grünschachner-Berger, V. (2009). Impact of wind power plants on black grouse, Lyrurus tetrix in Alpine regions. *Folia Zoologica*, *58*(2), 173-182.

X. Annexes

X.1. Fiche de renseignements et photographies calibrées des cadavres d'oiseaux et de chauves-souris retrouvés sur le parc éolien de Croquettes.

Formulaire de renseignements sur le suivi des espèces								
Nom du site : Croquettes		Date du suivi : 18/05/2020						
Observateur : Cécile CHAILLOT		Heure	de 7h00 à 8h30					
		Espèce : Pipistrelle de Nathusius (Pipistrellus nathusii)						
N° de l'éolienne :	CROQ-1	Photo :	DSCN9834					
Heure du relevé : 7h30		Cadavre N°:	1					
Eolienne à l'arrêt :	Non	Sexe:	Mâle					
Distance au pied du mât :	48 m	Age:	Ad ■ Juv □					
Direction par rapport au mât :	Sud-Ouest	Mort depuis x jours :	Quelques jours					
Latitude:	47.1533549	Etat du cadavre :	Relativement frais					
Longitude :	2.174025	Présence d'insectes :	Oui					
		Partie prélevée :	Entier					

Note sur les blessures et état du cadavre : Partie dorsale du cadavre prédatée. Pas revue le 25/05

Nom du site : Croquettes Observateur : Cécile CHAILLOT		Date du suivi : 15/06/2020					
			de 6h30 à 7h10				
		Espèce : Pipistrelle commune (Pipistrellus pipistrellus					
N° de l'éolienne :	CROQ-1	Photo:	DSCN9960				
Heure du relevé :	6h48	Cadavre N°:	2				
Eolienne à l'arrêt :	Non	Sexe:	Indéterminé Ad ■ Juv □				
Distance au pied du mât :	22 m	Age:					
Direction par rapport au mât :	Nord-Est	Mort depuis x jours :	Le jour même				
Latitude :	47.1539229	Etat du cadavre :	Frais				
Longitude :	2.1745141	Présence d'insectes :	Oui				
		Partie prélevée :	Entier				

Note sur les blessures et état du cadavre : Abdomen ouvert, entrailles visibles. Revue le 19/06. Non revue le 29/06.

Nom du site : Croquettes		Date du suivi : 15/06/2020					
Observateur : Cécile CHAILLO	bservateur : Cécile CHAILLOT		de 7h40 à 8h10				
		Espèce : Pipistrelle cor	nmune (<i>Pipistrellus pipistrellus</i>)				
N° de l'éolienne :	CROQ-3	Photo:	DSCN9963				
Heure du relevé :	7h58	Cadavre N°:	3				
Eolienne à l'arrêt :	à l'arrêt : Non		Indéterminé				
Distance au pied du mât :	10 m	Age:	Ad ■ Juv □				
Direction par rapport au mât :	Nord-Est	Mort depuis x jours :	Quelques jours				
Latitude :	47.1457759	Etat du cadavre :	Relativement frais				
Longitude :	2.1762281	Présence d'insectes :	Oui				
		Partie prélevée :	Peau de l'abdomen				

Note sur les blessures et état du cadavre : Intact mis à part la peau de l'abdomen manquante. Revue le 19/06. Non revue le 29/06.

Formulaire de renseignements sur le suivi des espèces								
Nom du site : Croquettes		Date du suivi : 15/06/2020						
Observateur : Cécile CHAILLO	Observateur : Cécile CHAILLOT		de 8h30 à 9h00					
		Espèce : Pipistrelle de	Nathusius (<i>Pipistrellus nathusii</i>)					
N° de l'éolienne :	CROQ-4	Photo:	DSCN9967					
Heure du relevé :	8h54	Cadavre N°:	4					
Eolienne à l'arrêt :	Non	Sexe :	Indéterminé					
Distance au pied du mât :	0 m	Age:	Ad ■ Juv □					
Direction par rapport au mât :	Nord-Est	Mort depuis x jours :	Le jour même					
Latitude :	47.1417092	Etat du cadavre :	Frais					
Longitude :	2.1789703	Présence d'insectes :	Non					
_		Partie prélevée :	Entier					
Note sur les blessures et état du	cadavre : Intact et n	on rigide. Non revue le 19/06	6. Temps de disparition : environ 2j					

Nom du site : Croquettes		Date du suivi : 19/06/2020						
Observateur : Cécile CHAILLO	T	Heure	de 6h25 à 7h20					
		Espèce : DOUTE Pipist nathusii)	trelle de Nathusius (<i>Pipistrellus</i>					
N° de l'éolienne :	CROQ-1	Photo:	DSCN9986					
Heure du relevé :	6h48	Cadavre N°:	5					
Eolienne à l'arrêt :	Non	Sexe:	Indéterminé					
Distance au pied du mât :	21 m	Age:	Ad ■ Juv □					
Direction par rapport au mât :	Nord-Est	Mort depuis x jours :	Quelques jours					
Latitude :	47.1538267	Etat du cadavre :	En décomposition					
Longitude :	2.1745896	Présence d'insectes :	Oui					
		Partie prélevée :	Tout l'intérieur					

Nom du site : Croquettes Observateur : Cécile CHAILLOT		Date du suivi : 03/07/2020					
		Heure	de 9h07 à 9h53				
		Espèce : Pipistrelle com	nmune (Pipistrellus pipistrellus)				
N° de l'éolienne :	CROQ-5	Photo:	DSCN0006				
Heure du relevé :	9h30	Cadavre N°:	6				
Eolienne à l'arrêt : Non		Sexe :	Indéterminé				
Distance au pied du mât :	12 m	Age:	Ad ■ Juv □				
Direction par rapport au mât :	Nord-Est	Mort depuis x jours :	Le jour même				
Latitude :	47.1387351	Etat du cadavre :	Frais				
Longitude :	2.1815851	Présence d'insectes :	Oui				
		Partie prélevée :	Entier				

Formulaire de renseignements sur le suivi des espèces									
Nom du site : Croquettes		Date du suivi : 27/07/2020							
Observateur : Cécile CHAILLOT		Heure	de 9h16 à 10h25						
		Espèce : Faucon créce	erelle (<i>Falco tinnunculus</i>)						
N° de l'éolienne :	CROQ-2	Photo:	DSCN0112 DSCN0114						
Heure du relevé :	9h45	Cadavre N°:	7						
Eolienne à l'arrêt :	Non	Sexe:	Indéterminé						
Distance au pied du mât :	40 m	Age :	Indéterminé						
Direction par rapport au mât :	Sud-Ouest	Mort depuis x jours :	Plusieurs semaines						
Latitude :	47.1495942	Etat du cadavre :	Décomposé						
Longitude :	2.1747797	Présence d'insectes :	Non						
		Partie prélevée :	Chairs, pattes						
Note sur les blessures et état du		e décomposé, il ne reste qu	e des plumes et les os. Revu le 10/08.						

Non revu le 21/08.

Nom du site : Croquettes		Date du suivi : 21/08/2020					
Observateur : Cécile CHAILLOT		Heure	de 8h30 à 9h18				
		Espèce : Pipistrelle con	nmune (<i>Pipistrellus pipistrellus</i>)				
N° de l'éolienne :	CROQ-1	Photo:	DSCN0212				
Heure du relevé :	8h49	Cadavre N°:	8				
Eolienne à l'arrêt :	l'arrêt : Non		Indéterminé				
Distance au pied du mât :	26 m	Age:	Indéterminé				
Direction par rapport au mât :	Nord	Mort depuis x jours :	Quelques jours				
Latitude:	47.153979	Etat du cadavre :	En décomposition				
Longitude :	2.1742895	Présence d'insectes :	Oui				
		Partie prélevée :	Les chairs et entrailles				

01/09.

Nom du site : Croquettes		Date du suivi : 07/09/2020					
Observateur : Cécile CHAILLOT		Heure	de 10h48 à 12h09				
		Espèce : Pipistrelle de	Nathusius (<i>Pipistrellus nathusii</i>)				
N° de l'éolienne :	CROQ-3	Photo:	DSCN0288				
Heure du relevé :	11h22	Cadavre N°:	9				
Eolienne à l'arrêt : Non		Sexe:	Indéterminé				
Distance au pied du mât :	31 m	Age:	Indéterminé				
Direction par rapport au mât :	Sud-ouest	Mort depuis x jours :	Le jour même				
Latitude :	47.145500	Etat du cadavre :	Frais				
Longitude :	2.175881	Présence d'insectes :	Non				
		Partie prélevée :	Entier				

Nom du site : Croquettes		Date du suivi : 11/09/2020					
Observateur : Cécile CHAILLOT		Heure	de 10h00 à 11h15				
		Espèce : Pipistrelle de	Nathusius (<i>Pipistrellus nathusii</i>)				
N° de l'éolienne :	CROQ-2	Photo:	DSCN0313				
Heure du relevé :	10h53	Cadavre N°:	10				
Eolienne à l'arrêt :	Oui	Sexe:	Indéterminé				
Distance au pied du mât :	8 m	Age:	Indéterminé				
Direction par rapport au mât :	Sud-Est	Mort depuis x jours :	Quelques jours				
Latitude :	47.149912	Etat du cadavre :	Relativement frais				
Longitude :	2.175034	Présence d'insectes :	Oui				
·		Partie prélevée :	Aucune				

Nom du site : Croquettes		Date du suivi : 11/09/2020				
Observateur : Cécile CHAILLOT		Heure	de 12h32 à 13h09			
		Espèce : Pipistrelle con	nmune (<i>Pipistrellus pipistrellus</i>)			
N° de l'éolienne :	CROQ-4	Photo:	DSCN0334			
Heure du relevé :	12h49	Cadavre N°:	11			
Eolienne à l'arrêt :	Non	Sexe :	Indéterminé			
Distance au pied du mât :	13 m	Age :	Indéterminé			
Direction par rapport au mât :	Sud	Mort depuis x jours :	Quelques jours			
Latitude :	47.141559	Etat du cadavre :	Relativement frais			
Longitude :	2.179032	Présence d'insectes :	Oui			
		Partie prélevée :	Aucune			

X.2. Tableau 25 : Récapitulatif des données de mortalité des oiseaux, classées par espèce, en Europe (Dürr, 2020).

									Мо	rtalité	en E	Europe										
Espèce	A	BE	BG	СН	CR	cz	D	DK	E	EST	F	FR	GB	GR	LX	NL	N	Р	PL	RO	s	Total
Gyps fulvus			1				1		1892			3		4				12				1913
Larus argentatus		799					120		1			6	52			103					2	1083
Buteo buteo	15	1					630		31			78		3		12		13	5		3	791
Chroicocephalus ridibundus	4	330					173		2			66	12			81			1			669
Milvus milvus		5					532	1	30			19	5		1						12	605
Falco tinnunculus	28	7					135		273			105				9		39	2			598
Apus apus	14	4		1		2	157	1	75			125		2		5		18			3	407
Alauda arvensis	23					8	116		89			91		1		2		44	10			384
Anas platyrhynchos	4	48		2			205		36			9				32	3	1	13			353
Haliaeetus albicilla	1						168	1		1	7					2	85		10		58	333
Emberiza calandra							37		252			11						20				320
Delichon urbicum	1						51		42			12		25		3		158			6	298
Larus fuscus		202					61		4			7	1			23						298
Regulus ignicapilla	1	2		8		3	40		45			160						2				261
Columba palumbus	5	12					184		14			29				3			2		1	250
Sturnus vulgaris	9	27				2	92		8			44				21	1		3			207
Sylvia atricapilla	1						8		184			3		2								198
Turdus philomelos		12		1			24		129			24		2		3					1	196
Galerida theklae									182									5				187
Columba livia f. domestica	26	19				1	77		7			32				15						177
Regulus regulus	14	1		3			117		5			21				3			6			170
Sterna hirundo		162					1									4						167
Erithacus rubecula		1		1		1	34		79			34		2		1		3	1		4	161
Alectoris rufa									115			12						19				146
Ciconia ciconia	1						75		66			1										143
Milvus migrans							49		71			22										142
Passeres spec.	11						25		26			50	14			4	3		3			136
Lullula arborea							12		62			5		17				25				121
Phasianus colchicus	62	4				1	32		2			14				3						118
Galerida cristata									105			1		2				1				109
Passer domesticus	1						5		82			14				3		1				106
Corvus corone	6	1					50	1	12			14				5	10	2			1	102
Bubulcus ibis									96			1						4				101
Sturnus unicolor									96													96
Regulus spec.	2			2			12					20				3					48	87
Falco naumanni									62			24										86
Larus marinus		22					2					2	55			3	1					85
Larus canus	2	6					58	1								15					2	84
Turdus merula	2	1					16		43			11		6				1			4	84
Ficedula hypoleuca						1	9		37			23				1		8				79
Melanocorypha calandra									75													75
Circaetus gallicus									64					2								66
Perdix perdix	29						5					29				1			1			65
Accipiter nisus	1	4					27		18			13		1								64
Circus aeruginosus	3	1					39		12					1		5			2			63
Phylloscopus collybita							4		37			15										56

									Мс	ortalité	en E	Europe										
Espèce	A	BE	BG	СН	CR	cz	D	DK	Е	EST	F	FR	GB	GR	LX	NL	N	Р	PL	RO	s	Total
																					_	
Circus pygargus	1						6		26			15						7				55
Fringilla coelebs							16	1	24			9		2					<u> </u>		1	53
Larus spec.	10	1					16		1			16		1		3	2				2	52
Columba spec.	30						5		9			3	1			2						50
Emberiza citrinella						1	32		6			8							2			49
Larus cachinnans	1		1				2		45													49
Linaria cannabina	3						2	1	24			7				1		10	1			49
Hieraaetus pennatus									44			1		1								46
Pica pica	6	2					5		33													46
Hirundo rustica							27		13			2				1		1			1	45
Motacilla alba		2					11		27			4				1						45
Carduelis carduelis							4		36			2				1		1				44
Pandion haliaetus							31		8			3	1						1			44
Sylvia cantillans									43													43
Pluvialis apricaria							25		3			3				3	7				1	42
Streptopelia turtur	1								33			5						1				40
Bubo bubo	1		1			1	18		18			1										39
Turdus viscivorus				1			9		27					1								38
Ardea cinerea	1	7					14		2			3				5	4					36
Lagopus lagopus																	33				1	34
Anser anser	1	1					17		3							6	4					32
Anthus pratensis	+ '	5					1		17			3		1		1	1	3				32
Coturnix coturnix		3				1										'	'	3				32
						<u>'</u>	1		26 7			7				1		3				32
Falco subbuteo	1						17							_		'			_			
Lanius collurio	1						25		1			2		2					1			32
Cygnus olor	1						24												5		1	31
Falco peregrinus	1	3					19		6				1			1			<u> </u>			31
Pernis apivorus							20		8			2							1			31
Fulica atra		10					9		1							9			1			30
Corvus corax							26		3													29
Petronia petronia									29													29
Haematopus ostralegus		5					4									16	3					28
Columba livia									3			23				1						27
Grus grus			1		L	L	23		2		L		L		L			L	1	L		27
Passer montanus	1						24					1				1						27
Tachymarptis melba							2		23			2										27
Turdus pilaris	1			1			16		5			1				2	1					27
Vanellus vanellus		3					19					2				3						27
Columba oenas		3					14		3									6				26
Thalasseus sandvicensis		25														1						26
Tyto alba	1						13		6			5				1			1			26
Turdus iliacus	+	7					4	1	11							2						25
Asio otus	1						16		2			5										24
Phylloscopus trochilus	1						7		14												1	23
Anthus campestris	+ '-								20		-	1						1			Ė	22
Aquila chrysaetos	+								8		_						2	<u> </u>		-	12	22
	+	4					6				_					4					14	
Coloeus monedula	+	1					6		9		_					4			1			20
Lanius senator			-	-	-	-	_		20				_		-	_			<u> </u>	-		20
Phalacrocorax carbo	-				-	-	5		4			4	1		-	6			<u> </u>	-		20
Serinus serinus							Ī	Ì	20					Ì	I	l	ĺ	Ì	1		Ì	20

									Мс	ortalité	en E	Europe										
Espèce	А	ВЕ	ВG	СН	CR	cz	D	DK	Е	EST	F	FR	GB	GR	LX	NL	N	Р	PL	RO	s	Total
Corvus spec.	3						11		1			4										19
Neophron percnopterus									19													19
Cyanistes caeruleus	2			1			7		3			4				1						18
Gallinago gallinago							2		1			1	1			1	11	1				18
Garrulus glandarius							8		8			2										18
Oenanthe hispanica									18													18
Somateria mollissima							1						15			1					1	18
Sylvia undata									11									7				18
Saxicola rubicola									14			1						2				17
Scolopax rusticola	1	1					10		2					1		1					1	17
Accipiter gentilis							9	1	4			1				1						16
Acrocephalus scirpaceus							3		13													16
Corvus frugilegus	9						6														1	16
Gallinula chloropus							2		8			1				5						16
Oenanthe oenanthe							3		7			2		3			1					16
Burhinus oedicnemus									14			1										15
Chloris chloris							9		3			3										15
Emberiza cia									14									1				15
Parus major						1	11		3													15
Sternula albifrons		15																				15
Larus michahellis	1								11			2										14
Phoenicurus ochruros	1						1		11			1										14
Streptopelia decaoctao	4						3		2			5										14
Tetrao urogallus							1		1												12	14
Apus pallidus									12									1				13
Circus cyaneus							1		1			4	6				1					13
Merops apiaster	1								9			2						1				13
Clanga pomarina							6							1					3	2		12
Hippolais polyglotta							1		10			1										12
Motacilla flava							7		1			4										12
Numenius arquata							4					1				7						12
Sylvia borin									11			1										12
Tadorna tadorna		2					2					1				7						12
Anas crecca		2					6									1	2					11
Anthus trivalis	+						5		2			4										11
Falconiformes spec.							3		6			1		1								11
Periparus ater	+						7					4										11
Rissa tridactyla		3							5				1			1	1					11
Sylvia melanocephala	+								10					1								11
Cuculus canorus	1						3		6					1								10
Passer spec.	+											10										10
Riparia riparia	1						5		3					1		1						10
Troglodytes troglodytes	+						4		1			4		1								10
Branta leucopsis	+						8									1						9
Locustella naevia				1			1		6			1										9
Phylloscopus ibericus	+								2									7				9
Rallus aquaticus	+						3		2			2				2						9
Upupa epops	+								7					1				1				9
Anthus spinoletta	1								7									1				8
Buteo lagopus	1						7									1						8

									Мс	rtalité	en E	Europe										
Espèce	Α	BE	BG	СН	CR	cz	D	DK	E	EST	F	FR	GB	GR	LX	NL	N	Р	PL	RO	s	Tota
Ciconia nigra							4		3			1										8
Emberiza cirlus									6									2				8
Strix aluco							5		3													8
Alauda spec.									7													7
Coccothraustes coccothraustes							6							1								7
Cygnus cygnus / olor							7															7
Emberiza schoeniclus							4		3													7
Luscinia megarhynchos							1		5			1										7
Nonpasseriformes spec.							5					1				1						7
Oriolus oriolus							5		2													7
Ptyonoprogne rupestris									7													7
Turdus spec.		1						1	2			1		1		1						7
Anas spec.							1					2				1			2			6
Anser albifrons	1						5									1						6
Anser fabalis							5									1						6
Calandrella brachydactyla									5									1				6
Clamator glandarius									6													6
Dendrocopos major							5												1			6
Egretta garzetta	†								3			3										6
Ichthyaetus melanocephalus		2										4										6
Loxia curvirostra							1		4			1										6
Lyrurus tetrix	6																					6
Mareca penelope		1					5															6
Muscicapa striata									2			3						1				6
Phoenicurus phoenicurus							1		5													6
Picus viridis							3		2									1				6
Tringa totanus		3														1	1				1	6
Asio flammeus		_					4		1												·	5
Aythya fuligula		1					3									1						5
Botaurus stellaris							2									2			1			5
Lanius excubitor							2		2			1				_			·			5
Mareca strepera							3									2						5
Phylloscopus spec.									5													5
Recurvirostra avosetta												2				3						5
Saxicola rubetra	1						3		1		-					Ť						5
Sylvia conspicillata	+ -						Ť		5													5
Athene noctua	+								4		-											4
Calidris alpina							3									1						4
Cisticola juncidis	1						Ť		2									2				4
Falco columbarius	1						2		1								1	Ť				4
Jynx torquilla	\vdash						1		1		-	1					Ė	1				4
Lanius meridionalis							'		4			'						'				4
Limosa limosa	-	3														1						4
Otis tarda	1	+							3													4
Pterocles alchata	+ '								4		_											4
Sylvia hortensis	\vdash								4		_											4
	-								2		_			1								3
Alonochen aegyntiaca	\vdash						2				_			<u> </u>		1						3
Alopochen aegyptiaca Anser albifrons / fabalis	\vdash			-			3									<u> </u>						3
		,					3															
Anser anser f. domestica		3	l	l			ĺ	Ì	ĺ	l	l			l				1	İ	Ì		3

									Mo	rtalité	en E	Europe										
Espèce	A	BE	BG	СН	CR	cz	D	DK	E	EST		FR	GB	GR	LX	NL	N	Р	PL	RO	s	Total
Arenaria interpres		3																				3
Aythya ferina		3																				3
Cygnus cygnus							2										1					3
Fulmarus glacialis													1			1	1					3
Podiceps cristatus							1									2						3
Sitta europaea							3															3
Spatula clypeata							1									1	1					3
Sterna spec.							•						3				·					3
Sylvia communis							1		1			1										3
Alectoris chukar							'		'			1		2								2
																4						
Anseridae spec.	1															1						2
Certhia familiaris							2															2
Cygnus columbianus bewickii												,				2						2
Emberiza spec.												1		1								2
Hirundidae spec.							1					1				_						2
Hydrocoloeus minutus																2						2
Milvus spec.									2													2
Monticola saxatilis									2													2
Numenius phaeopus												2										2
Passer hispaniolensis									2													2
Phylloscopus inornatus									1			1										2
Phylloscopus sibilatrix							1		1													2
Plectrophenax nivalis						1													1			2
Pterocles orientalis									2													2
Pyrrhocorax pyrrhocorax									2													2
Strigiformes spec.									2													2
Sylvia curruca							2															2
Turdus torquatus							1		1													2
Uria aalge							1									1						2
Acanthis flammea							1															1
Acrocephalus arundinaceus									1													1
Acrocephalus palustris							1															1
Aegolius funereus					1																	1
Aegothalus caudatus							1															1
Alcedo atthis												1										1
Alle alle																	1					1
Anthus spec.																		1				1
Aquila fasciata									1													1
Aquila heliaca	1																					1
Ardea alba							1															1
Aythya marila																1						1
Aythya nyroca														1								1
Branta bernicla																1						1
Branta canadensis																1						1
Calidris canutus									1													1
Caprimulgus europaeus									1													1
Caprimulgus ruficollis									1													1
Carduelis spinus																		1				1

									Мс	rtalité	en E	Europe										
Espèce	A	BE	ВG	СН	CR	cz	D	DK	E	EST	F	FR	GB	GR	LX	NL	N	Р	PL	RO	s	Total
Cecropis daurica									1													1
Cersophilus duponti									1													1
Charadrius alexandrinus		1																				1
Charadrius dubius							1															1
Charadrius hiaticula									1													1
Chlidonias niger							1															1
Chloephaga picta		1																				1
Crex crex			1																			1
Cyanopica cyanus									1													1
Dendrocopos medius														1								1
Dendrocopos spec.														1								1
Emberiza hortulana																		1				1
Eremophila alpestris							1															1
Eudromias morinellus							1															1
Falco peregrinus x rusticolus hybride																			1			1
Falco vespertinus							1															1
Fingilla spec.									1													1
Gavia stellata							1															1
Geronticus eremita									1													1
Glareola pratincola									1													1
Gyps africanus									1													1
Gyps ruepellii									1													1
Hirundapus caudacutus													1									1
Ichthyaetus audouinii									1													1
Linaria flavoristris																	1					1
Loxia pytyopsittacus																	1					1
Lymnocryptes minimus												1										1
Melanitta nigra																1						1
Mergus serrator																	1					1
Morus bassanus													1									1
Motacilla spec.												1										1
Netta rufina												1										1
Nycticorax nycticorax									1													1
Oenanthe spec.									1													1
Otus scops									1													1
Parus spec.	1																					1
Pelecanus onocrotalus							1															1
Platalea leucorodia									1													1
Pluvialis squatarola																1						1
Poecile montanus														1								1
Porzana porzana									1													1
Psittacula krameri									1													1
Sylvia spec.												1										1
Tetrax tetrax									1													1
Total	360	1791	5	22	1	24	4196	10	5545	1	7	1391	172	99	1	500	185	442	82	2	181	15017

A = Autriche; BE = Belgique; BG = Bulgarie; CH = Suisse; CR = Croatie; CZ = République tchèque; D = Allemagne; DK = Danemark; E = Espagne; EST = Estonie; F = Finlande; FR = France; GB = Grande-Bretagne; GR = Grèce; NL = Pays-Bas; N = Norvège; P = Portugal, PL = Pologne; RO = Roumanie; S = Suède.

X.3. Tableau 26 : Récapitulatif des données de mortalité des chiroptères, classées par espèce, en Europe (Dürr, 2020).

										E	uropa											
Espèce	А	ВЕ	СН	CR	cz	D	DK	ES	EST	FI	FR	GR	IT	LV	NL	N	PT	PL	RO	s	UK	Total
Pipistrellus pipistrellus	2	28	6	5	16	726		211			995	0	1		15		323	5	6	1	46	2386
P. nathusii	13	6	6	17	7	1088	2				272	35	1	23	8			16	90	5	1	1590
Nyctalus noctula	46	1			31	1230		1			104	10					2	17	76	14	11	1543
Chiroptera spec.	1	11		60	1	76		320	1		439	8	1				120	3	15	30	9	1095
Pipistrellus spec.	8	2		102	9	91		25			303	1		2			128	2	48		12	733
N. leislerii			1	4	3	188		15			153	58	2				273	5	10			712
P. kuhlii				144				44			219	1					51		10			469
P. pygmaeus	4			1	2	146					176	0		1			42	1	5	18	52	448
P. pipistrellus / pygmaeus	1		2			3		271			40	54					38	1	2			412
Hypsugo savii	1			137		1		50			57	28	12				56		2			344
Vespertilio murinus	2	1		17	6	149					11	1		1				9	15	2		214
Eptesicus serotinus	1				11	66		2			33	1			2			3	1			120
E. isabellinus								117									3					120
E. serotinus / isabellinus								98									17					115
Tadarida teniotis				7				23			2						39					71
E. nilssonii	1				1	6			2	6				13		1		1	1	13		45
N. lasiopterus								21			10	1					9					41
Nyctalus spec.						2		2			1						17					22
Miniopterus schreibersi								2			7						4					13
M. daubentonii						7					1						2					10
Myotis spec.						2		3			1								4			10
Plecotus austriacus	1					8																9
P. auritus						7															1	8
Myotis myotis						2		2			3											7
M. blythii								6			1											7
Barbastella barbastellus						1		1			4											6
M. emarginatus								1			3						1					5
M. mystacinus						3					1	1										5
M. dasycneme						3																3
M. nattereri						1															1	2
M. brandtii						2																2
M. bechsteini											1											1
Rhinolophus ferrumequinum								1														1
R. mehelyi								1														1
Rhinolophus spec.								1														1

Espèce										ı	Europa											Total
Espece	А	BE	СН	CR	cz	D	DK	ES	EST	FI	FR	GR	IT	LV	NL	N	PT	PL	RO	s	UK	Total
Total	81	49	15	494	87	3808	2	1218	3	6	2837	199	17	40	25	1	1125	63	285	83	133	10571

A = Autriche; BE = Belgique; CH = Suisse; CR = Croatie; CZ = République tchèque; D = Allemagne; DK = Danemark; E = Espagne; EST = Estonie; F = Finlande; FR = France; GR = Grèce; IT = Italie; LV = Lettonie; NL = Pays-Bas; N = Norvège; PT = Portugal, PL = Pologne; RO = Roumanie; S = Suède; UK = Royaume-Uni