Suivi Environnemental ICPE

PARC ÉOLIEN DE PIÈCE DE VIGNES

COMMUNE DE LINIEZ (36)

Suivi de l'Année 12 d'exploitation (2022)

Maître d'ouvrage

Étude réalisée par :

Encis Environnement

Dans le cadre de l'article 9 de l'arrêté ICPE du 22 juin 2020 modifiant les prescriptions de l'article 12 de l'arrêté du 26 août 2011, relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent, les exploitants des parcs éoliens doivent tenir à disposition de l'inspection des ICPE un suivi environnemental.

Pour chaque parc éolien, le rapport de suivi environnemental remis à l'inspection des installations classées sera composé de tout ou partie des quatre suivis suivants en fonction des spécificités du site :

- Suivi de l'évolution des habitats naturels
- Suivi de l'activité de l'avifaune (oiseaux nicheurs, migrateurs et hivernants)
- Suivi de l'activité des chiroptères
- Suivi de mortalité de l'avifaune et des chiroptères

Le bureau d'études ENCIS Environnement a été missionné par la société EDP Renewables pour réaliser ce suivi environnemental ICPE en 2022.

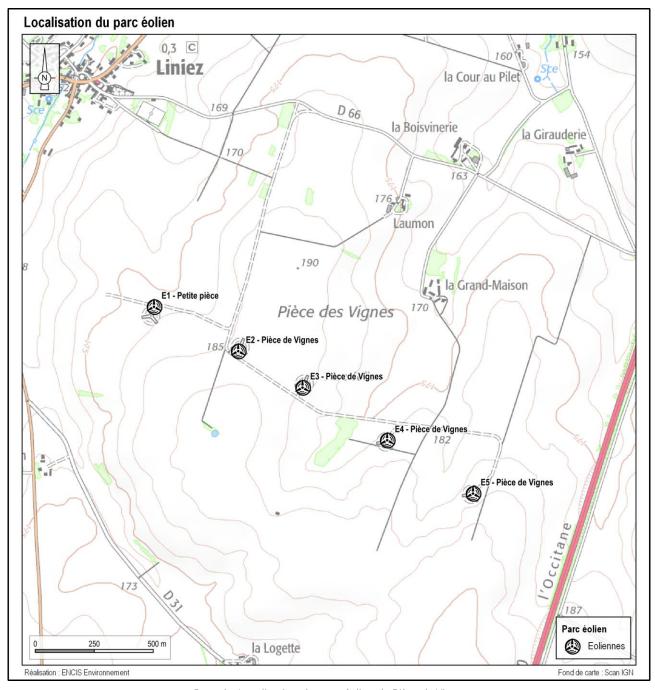
Après avoir précisé la méthodologie utilisée et ses limites, ce dossier présente les résultats des différents suivis.

SOMMAIRE

1	Cadre général de l'étude	5
	1.1 Maître d'ouvrage – exploitant	6
	1.2 Auteurs de l'étude	
	1.3 Présentation du parc éolien étudié	
	1.4 Cadre règlementaire de l'étude de suivi environnemental pour les projets éolie	
	1.5 Les impacts potentiels d'un parc éolien en fonctionnement sur le milieu nature	
	1.5.1 Avifaune	
	1.5.2 Chiroptères	
2	Méthodes utilisées	
	2.1 Méthodologie et démarche générale	
	2.2 Suivi d'activité des chiroptères	
	2.2.1 Objectif et paramètres à prendre en compte	
	2.2.2 Méthodologie et pression d'inventaire	
	2.3 Suivi de la mortalité sur l'avifaune et les chiroptères	
	2.3.2 Protocole utilisé	
	2.3.1 Détermination du statut biologique	
	2.3.2 Méthodes d'estimation de la mortalité	
	2.4 Limites des méthodes utilisées et difficultés rencontrées	
	2.4.1 Limites des méthodes employées	
	2.4.2 Difficultés rencontrées	
3	Résultats et analyse du suivi d'activité des chiroptères	
	3.1 Bilan des connaissances de l'étude d'impact	
	3.2 Suivi de l'activité des chiroptères en 2022	
	3.2.1 Suivi ultrasonique automatique permanent en nacelle	
	3.3 Bilan et comparaison avec l'étude d'impact	
	3.3.1 Diversité spécifique	
	3.4 Principaux éléments à retenir du suivi ICPE	
4		
	·	
	4.1 Résultats des tests et paramétrage des méthodes d'estimation	
	4.1.1 Durée moyenne de l'intervalle	
	4.1.2 Efficacité du chercheur	
	4.1.3 Persistance des cadavres	
	4.1.4 Surfaces prospectées et correction surfacique	
	4.2.1 Bilan des connaissances sur la mortalité de l'avifaune liée à l'éolien	
	4.2.1 Bilan des connaissances sur la mortalite de l'avilaurie liee à l'échien	
	4.2.3 Résultats globaux du suivi de l'avifaune en 2018	
	4.2.4 Résultats saisonniers	
	4.2.5 Résultats spatialisés par éolienne	
	4.2.6 Causes potentielles de la mortalité engendrée sur le parc éolien	
	4.2.7 Incidences spécifiques du parc éolien sur l'avifaune	
	4.2.8 Comparaisons avec des données de 2022 avec celles de 2015	
	4.2.9 Synthèse	

4.3 Mortalité des chiroptères	86
4.3.1 Bilan des connaissances sur la mortalité des chiroptères liée à l'éolie	n 86
4.3.2 Bilan des connaissances de l'étude d'impact	91
4.3.3 Résultats globaux du suivi des chiroptères en 2022	91
4.3.4 Résultats saisonniers	
4.3.5 Résultats spatialisés par éolienne	95
4.3.6 Causes potentielles de la mortalité engendrée sur le parc éolien	96
4.3.7 Incidences spécifiques du parc éolien sur les chiroptères	97
4.3.8 Comparaisons avec des données de 2022 avec celles de 2015	
4.3.9 Synthèse	102
5 Mesures correctrices	103
Table des illustrations	111
Bibliographie	114
Annexes	124

1.1 Maître d'ouvrage – exploitant


Destinataire	edo Renewables
Adresse	25 Quai Panhard et Levassor, 75013 Paris
Interlocuteur	Marie PERRAULT – Spécialiste Environnement
Téléphone	06 44 15 96 53

1.2 Auteurs de l'étude

Structure	ecologie
Adresse	21 Rue de Columbia
	87 068 LIMOGES
Téléphone	05 55 36 28 39
Coordination de l'étude	Nicolas LAGARDE, Responsable d'études et développement -
	Ornithologue
Suivi de l'activité des chiroptères	Nicolas WAESSEM, Chargé d'études - Chiroptérologue
Suivi de la mortalité de l'avifaune et des chiroptères	Lucile MARGOT, Chargée d'études - Écologue
Correction	Michael LEROY, Responsable de l'agence écologie de Limoges
Validation	Michael LEROY, Responsable de l'agence écologie de Limoges
Version / date	Février 2023

1.3 Présentation du parc éolien étudié

Le parc éolien se situe sur la commune de Liniez dans le département de l'Indre. Le parc éolien « Pièce de Vignes » est composé de deux groupements de parcs éoliens comprenant l'entité « Petite Pièce » (une éolienne) et « Pièce de Vignes » (quatre éoliennes). Les modèles d'éoliennes sont de type ECO 100 de 3 MW, possèdent un moyeu à 90 m, une hauteur en bout de pale de 140 m et une garde au sol de 40 m. (carte suivante).

Carte 1 : Localisation du parc éolien de Pièce de Vignes

Implantées dans un secteur à forte dominante agricole, les cinq éoliennes et leurs plateformes se situent dans des parcelles cultivées (carte suivante).

Carte 2 : Localisation du parc éolien de Pièce de Vignes sur photographie aérienne

1.4 Cadre règlementaire de l'étude de suivi environnemental pour les projets éoliens

Création ou extension d'un parc éolien

L'arrêté du 26 août 2011, dans son article 12, précise pour une installation classée ICPE :

« L'exploitant met en place un suivi environnemental permettant notamment d'estimer la mortalité de l'avifaune et des chiroptères due à la présence des aérogénérateurs. Sauf cas particulier justifié et faisant l'objet d'un accord du préfet, ce suivi doit débuter dans les 12 mois qui suivent la mise en service industrielle de l'installation afin d'assurer un suivi sur un cycle biologique complet et continu adapté aux enjeux avifaune et chiroptères susceptibles d'être présents. Dans le cas d'une dérogation accordée par le préfet, le suivi doit débuter au plus tard dans les 24 mois qui suivent la mise en service industrielle de l'installation. Ce suivi est renouvelé dans les 12 mois si le précédent suivi a mis en évidence un impact significatif et qu'il est nécessaire de vérifier l'efficacité des mesures correctives. A minima, le suivi est renouvelé tous les 10 ans d'exploitation de l'installation. Le suivi mis en place par l'exploitant est conforme au protocole de suivi environnemental reconnu par le ministre chargé des installations classées. Les données brutes collectées dans le cadre du suivi environnemental sont versées, par l'exploitant ou toute personne qu'il aura mandatée à cette fin, dans l'outil de téléservice de " dépôt légal de données de biodiversité " créé en application de l'arrêté du 17 mai 2018. ».

Ce suivi doit également être conforme aux dispositions applicables aux ICPE relatives à l'étude d'impact. Ainsi, l'article R122-14 du code de l'environnement prévoit que : « - La décision d'autorisation, d'approbation ou d'exécution du projet mentionne :

1° Les mesures à la charge du pétitionnaire ou du maître d'ouvrage, destinées à éviter les effets négatifs notables du projet sur l'environnement ou la santé humaine, réduire les effets n'ayant pu être évités et, lorsque cela est possible, compenser les effets négatifs notables du projet sur l'environnement ou la santé humaine qui n'ont pu être ni évités ni suffisamment réduits ;

2° Les modalités du suivi des effets du projet sur l'environnement ou la santé humaine ;

3° Les modalités du suivi de la réalisation des mesures prévues au 1° ainsi que du suivi de leurs effets sur l'environnement, qui font l'objet d'un ou plusieurs bilans réalisés selon un calendrier que l'autorité compétente pour autoriser ou approuver détermine. Ce ou ces bilans sont transmis pour information par l'autorité compétente pour prendre la décision d'autorisation, d'approbation ou d'exécution à l'autorité administrative de l'État compétente en matière d'environnement. »

En novembre 2015, l'État a publié un protocole standardisé permettant de réaliser les suivis environnementaux. Il guide également la définition des modalités du suivi des effets du projet sur l'avifaune et les chiroptères prévu par l'article R.122-14 du code de l'environnement. Ce protocole a été abrogé et remplacé en 2018.

Le parc éolien de Pièce de Vignes fait partie des cas particuliers des parcs autorisés avant l'entrée en vigueur du protocole. Ainsi le protocole, dans son annexe 3, stipule que : « Dans le cas des parcs éoliens autorisés avant la date de mise en œuvre du présent protocole de suivi environnemental des parcs éoliens, plusieurs cas de figure existent :

- Le parc éolien a été mis en service depuis plus de 3 ans → cas 1 (cas du parc éolien de Pièce de Vignes).
 - Le parc éolien a été mis en service depuis moins de 3 ans → cas 2
 - Le parc éolien n'a pas encore été mis en service → cas 3

La prise en compte d'autres paramètres dans les suivis environnementaux de ces parcs éoliens, entraînent plusieurs situations différentes :

- Un suivi environnemental de l'avifaune et des chiroptères a été prévu par l'exploitant dans l'étud d'impact. Ce suivi peut avoir été repris dans les prescriptions de l'arrêté de permis de construire (et dans celles de l'arrêté d'autorisation d'exploiter, s'il existe) -> cas A (cas du parc éolien de Pièce de Vignes).
- Un suivi environnemental soit de l'avifaune soit des chiroptères a été prévu par l'exploitant dans l'étude d'impact. Ce suivi peut avoir été repris dans les prescriptions de l'arrêté de permis de construire (et dans celles de l'arrêté d'autorisation d'exploiter s'il existe) → cas B
- Aucun suivi environnemental n'est prévu dans l'étude d'impact ou dans l'arrêté de permis de construire (ou dans l'arrêté d'autorisation d'exploiter s'il existe) → cas C

En fonction de ces différents cas de figure, l'exploitant devra se mettre en conformité par rapport aux prescriptions de l'article 12 de l'arrêté du 26 août 2011 selon le tableau ci-dessous :

Mise en service du parc éolien Suivi environnemental prévu ou non	1	2	3
	Les modalités de suivi	Les modalités de suivi	Les modalités de suivi
	prévues initialement et	prévues initialement et	prévues initialement et
	validées par	validées par	validées par
	l'administration seront	l'administration seront	l'administration seront
Α	conservées et tiendront	conservées et tiendront	conservées et tiendront
	lieu de suivi	lieu de suivi	lieu de suivi
	environnemental au sens	environnemental au	environnemental au
	de l'article 12 de l'arrêté	sens de l'article 12 de	sens de l'article 12 de
	du 26 août 2011.	l'arrêté du 26 août 2011.	l'arrêté du 26 août 2011.
	Les modalités de suivi	Les modalités de suivi	Les modalités de suivi
	prévues initialement et	prévues initialement et	prévues initialement et
	validées par	validées par	validées par
	l'administration seront	l'administration seront	l'administration seront
	conservées et tiendront	conservées et tiendront	conservées et tiendront
В	lieu de suivi	lieu de suivi	lieu de suivi
Ь	environnemental au sens	environnemental au	environnemental au
	de l'article 12 de l'arrêté	sens de l'article 12 de	sens de l'article 12 de
	du 26 août 2011. Elles	l'arrêté du 26 août 2011.	l'arrêté du 26 août 2011.
	seront complétées par un	Elles seront complétées	Elles seront complétées
	suivi sur le groupe	par un suivi sur le	par un suivi sur le
	d'espèces non étudié	groupe d'espèces non	groupe d'espèces non

	conformément au	étudié conformément au	étudié conformément au
	présent protocole.	présent protocole.	présent protocole.
С	L'exploitant devra mettre en œuvre un suivi conforme au présent protocole selon une périodicité de 10 ans par rapport à la date de mise en service.	L'exploitant devra mettre en œuvre un suivi conforme au présent protocole dans les meilleurs délais, puis tous les 10 ans.	L'exploitant devra mettre en œuvre un suivi conforme au présent protocole dans les trois années suivant la mise en service, puis tous les 10 ans.

1.5 Les impacts potentiels d'un parc éolien en fonctionnement sur le milieu naturel

1.5.1 Avifaune

1.5.1.1 Perte d'habitat liée à l'effarouchement par les éoliennes

La perte d'habitat par effarouchement résulte d'un comportement d'éloignement des oiseaux autour des éoliennes en mouvement. Selon les espèces, cet éloignement s'explique par une méfiance instinctive du mouvement des pales et de leur ombre portée. Ce dérangement répété peut conduire à une perte durable d'habitat. La perturbation peut entrainer des conséquences faibles si le milieu concerné est commun et qu'il existe d'autres habitats similaires aux alentours. La perturbation

peut cependant être importante, particulièrement lorsque les espèces sont inféodées à un habitat particulier et que cet habitat est rare dans le secteur du site d'implantation. L'habitat affecté peut aussi bien concerner une zone de reproduction qu'une zone d'alimentation, et ce pendant toutes les phases du cycle biologique des oiseaux (reproduction, migration, hivernage).

Certains oiseaux s'adaptent facilement en s'habituant progressivement aux éoliennes dans leur entourage, d'autres sont très farouches. Le degré de sensibilité varie selon les espèces et le stade phénologique concerné.

L'analyse des résultats de 127 études portant sur les impacts des éoliennes sur la biodiversité (Hötker *et al.*, 2006) illustre ces différences interspécifiques, intraspécifiques et phénologiques. L'étude indique notamment que les distances d'évitement sont moins importantes en période de reproduction qu'en dehors de cette dernière. Par exemple, il est mentionné une distance d'évitement de 113 mètres pour le Canard colvert en période de reproduction, contre 200 mètres hors période de reproduction (valeurs médianes). Cette distance d'évitement est de 300 mètres pour la Barge à queue noire en période de reproduction, ainsi que pour le Canard siffleur et la Bécassine des marais hors période de reproduction (valeurs médianes). D'autres espèces apparaissent moins sensibles à l'effarouchement, comme le Pipit farlouse et la Bergeronnette printanière (respectivement 0 et 50 mètres en période de reproduction, valeurs médianes) ou encore le Faucon crécerelle et le Héron cendré (respectivement 0 et 30 mètres hors période de reproduction, valeurs médianes). Le site internet du programme national « éolien-biodiversité » créé à l'initiative de l'ADEME¹, du MEEDDM², du SER-FEE³ et de la LPO⁴, évoque une distance d'éloignement variant de quelques dizaines de mètres jusqu'à 400-500 mètres du mât de l'éolienne en fonctionnement. Selon la même source, certains auteurs témoignent de distances maximales avoisinant 800 à 1 000 mètres.

L'accoutumance des oiseaux aux éoliennes est toujours discutée, les données étant parfois contradictoires pour une même espèce.

¹ Agence De l'Environnement et de la Maîtrise de l'Energie

² Ministère de l'Écologie, de l'Energie, du développement Durable et de la Mer

³ Syndicat des Énergies Renouvelables – France Energie Éolienne

⁴ Ligue de Protection des Oiseaux

Hivernants et migrateurs

Peu de suivis post-implantation se sont penchés sur les réponses comportementales des groupes de passereaux hivernants ou en halte migratoire face à la présence d'éoliennes. La bibliographie est parfois contradictoire. En Vendée, malgré les difficultés à appréhender le rôle des aérogénérateurs, après l'implantation du parc de Bouin (Dulac, 2008), certaines espèces semblent toujours fréquenter le secteur sans évolution significative de la taille des groupes (Étourneau sansonnet, Alouette des champs, Pigeon ramier, *etc.*); alors que pour d'autres espèces, une diminution du nombre d'oiseaux par groupe a été constatée (Hirondelle rustique). De même, à Tarifa, Janss (2000) n'a pas montré de différence de densité des groupes hivernants de Pipit farlouse, de Linotte mélodieuse et de Chardonneret élégant.

Pour les espèces de petite et moyenne tailles, Hötker *et al.*, 2006, semblent confirmer un effet faible lié à la perte d'habitat, et indiquent une distance d'évitement nulle pour l'Alouette des champs, l'Étourneau sansonnet et la Corneille noire et de 100 mètres pour le Pigeon ramier (valeurs médianes, hors période de reproduction).

En revanche, en hiver, pour certaines espèces de moyenne taille, Pratz (2010) indique que les groupes semblent rester à l'écart par rapport aux éoliennes et ne traversent que très rarement les parcs denses ou en éventail (Pigeon ramier, Pluvier doré, Vanneau huppé; parcs de Beauce).

Nicheurs

La bibliographie s'intéressant à la méfiance des oiseaux vis-à-vis des éoliennes semble montrer que les nicheurs de petites et moyennes tailles sont moins gênés par la présence des éoliennes que les oiseaux migrateurs ou hivernants. Plusieurs auteurs témoignent d'une accoutumance des individus locaux à la présence de ces nouvelles structures (Dulac, 2008 ; Albouy, 2005). Faggio *et. al.* (2003) indiquent une indifférence totale vis-à-vis des éoliennes pour les espèces locales ou nicheuses qui restent en permanence près du sol comme la Fauvette sarde et la Perdrix rouge.

La densité des oiseaux peut également être affectée. Les travaux de Pearce-Higgins *et al.*, (2009), concernant neuf parcs éoliens au Royaume-Uni, suggèrent que les densités d'oiseaux nicheurs peuvent être réduites de 15 à 53 % dans un rayon de 500 mètres autour des éoliennes (espèces les plus touchées : Buse variable, Busard Saint-Martin, Pluvier doré, Bécassine des marais, Courlis cendré et Traquet motteux).

Espèces des milieux aquatiques

Les oiseaux d'eau peuvent s'avérer farouches vis-à-vis de la présence des éoliennes. Hors période de reproduction, selon Hötker *et al.*, (2006), les anatidés (canards, oies, cygnes) se maintiennent parfois à distance des mâts. Cet éloignement a été estimé entre 125 et 300 mètres vis-à-vis du mât (valeurs médianes). Il est à noter que l'importance des écarts types révèle la disparité des comportements intraspécifiques. Ces différences peuvent être liées à la configuration du site (nombre et hauteur des éoliennes, agencement, paysage), et à la capacité d'adaptation des oiseaux à la présence des éoliennes. À titre d'exemple, des études ont mis en évidence des signes d'accoutumance (diminution des distances d'évitement) pour le Canard colvert et la Foulque macroule, des signes de non-accoutumance (augmentation des distances d'évitement) pour le Courlis cendré, voire les deux types de comportement pour le Vanneau huppé (Hötker *et al.*, 2006).

Une capacité d'accoutumance des oiseaux d'eau nicheurs à la présence des éoliennes dans leur environnement a également été documentée (Dulac, 2008), notamment chez le Canard colvert (Roux *et al.*, 2013). Toutefois, les échassiers et les oiseaux aquatiques seraient plus sensibles à ces perturbations indirectes par perte ou modifications d'habitats que d'autres (Gaultier *et al.* 2019). Roux *et al.*, (2013), ont ainsi constaté l'abandon total d'une héronnière située à proximité d'une éolienne et une forte diminution du nombre de couples installés dans une autre située à 250 mètres d'un parc éolien.

Enfin, certaines espèces semblent particulièrement sensibles, comme le Courlis cendré, dont la distance d'évitement en période de reproduction est évaluée à 800 mètres (Pearce-Higgins *et al.*, 2009).

Compte-tenu des résultats décrits précédemment, et notamment des variations intraspécifiques importantes, il est difficile de généraliser le phénomène d'accoutumance. Par ailleurs, il faut souligner que cette habituation se fait au prix d'un risque accru de collision avec les éoliennes (Gaultier *et al.*, 2019).

1.5.1.2 Effet barrière et contournement

L'effet barrière correspond à des **réactions de contournement des éoliennes lors des vols** des oiseaux. Les parcs éoliens peuvent représenter une barrière **aussi bien pour les oiseaux en migration active que pour les oiseaux en transit quotidien** entre les zones de repos et les zones de gagnage. L'effet barrière dépend de la sensibilité des espèces, de la configuration du parc éolien, de celle du site, et des conditions climatiques.

La **réaction d'évitement** a l'avantage de **réduire les risques de collision** pour les espèces sensibles lorsque les conditions de visibilité sont favorables. En revanche, elle pourrait générer une **dépense énergétique supplémentaire notable pour les migrateurs** lorsque le contournement prend des proportions importantes (effet cumulatif de plusieurs obstacles successifs) ou quand, pour diverses raisons (mauvaises conditions météorologiques, relief, *etc.*), la réaction est tardive à l'approche des éoliennes (mouvements de panique, demi-tours, éclatement des groupes, *etc.*).

Pour les oiseaux **nicheurs ou hivernants**, un parc formant une **barrière entre une zone de reproduction/de repos et une zone d'alimentation** peut conduire, selon la sensibilité des espèces, à une **augmentation du risque de collision voire une perte d'habitat** (abandon de la zone de reproduction ou de la zone de gagnage).

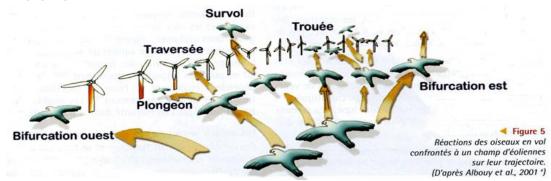


Figure 1 : Réactions des oiseaux en vol confrontés à un champs d'éoliennes sur leur trajectoire (d'après Albouy et al, 2001)

Les espèces qui sont le plus susceptibles d'être affectées par l'effet barrière sont les espèces de grande taille, qui se déplacent à des altitudes relativement élevées (notamment à hauteur de pales) et

dont le rayon d'action est vaste. Les effets semblent être plus importants pour les rapaces, les échassiers (Héron cendré), les canards et les columbidés (Pigeon ramier). Toutefois, Hötker et al., (2006), indique un effet barrière chez les oies, les rapaces et les passereaux (hors Étourneau sansonnet et Corvidés). Par exemple, un effet barrière a ainsi été noté chez la Grue cendrée (cinq études), le Milan noir (quatre études), le Milan royal (trois études), le Busard des roseaux (quatre études), le Busard Saint- Martin (une étude), l'Oie cendrée (deux études), le Pinson des arbres (trois études) ou encore l'Hirondelle rustique (quatre études).

D'après le programme national « éolien-biodiversité » (LPO-ADEME-MEDDE-SER/FEE), les **anatidés** (canards, oies, *etc.*) et les pigeons semblent assez sensibles à l'effet barrière, alors que les laridés (mouettes, sternes, goélands) et les passereaux le sont beaucoup moins. Faggio *et al.* (2003) ont ainsi observés que seulement 22,5 % des oiseaux de petite envergure et 16,3 % des oiseaux de moyenne envergure avaient un comportement d'évitement face aux éoliennes (évitement par-dessus, par-dessous, ou sur le côté).

Les réactions des espèces sont difficilement généralisables, car il existe des espèces pour lesquelles certaines études ont montré un effet barrière, tandis que d'autres ont mis en évidence l'absence d'un tel effet (Buse variable, Héron cendré, *etc.*, Hötker *et al.*, 2006).

Les réponses comportementales face à un parc éolien dépendent de l'espèce, des habitats présents au sein et autour du parc et surtout du nombre et de la disposition des éoliennes (espacements entre les éoliennes, hauteur, *etc.*). À titre d'exemple, sur le site de Bouin (Dulac, 2008), l'éloignement d'un peu plus de 200 mètres entre chaque éolienne, laissant un passage de plus de 100 mètres de libre (abstraction faite des espaces de survol des pales) semble provoquer une diminution du nombre de passages d'oiseaux au niveau des éoliennes. Cependant, cette diminution ne concerne que certaines espèces (Tadorne de Belon, Canard colvert, Bergeronnette grise, Pipit farlouse, Faucon crécerelle) et d'autres ne semblent pas affectées, comme la Mouette rieuse et l'Étourneau sansonnet. Pour autre exemple, la distance d'évitement de la Buse variable est courte : environ 25 mètres hors période de reproduction (valeur médiane, Hötker *et al.,* 2006).

Albouy *et al.,* (2001), ont montré que toutes les espèces, quelle que soit leur taille, peuvent être « dérangées » par la présence des éoliennes (88 % des individus ont réagi en adaptant leur trajectoire). Également, les auteurs indiquent que la distance d'anticipation dépend de la taille des migrateurs. Ainsi, les passereaux et les rapaces de petite taille réagissent généralement à 100-200 mètres en amont du parc, tandis que les grands rapaces et grands échassiers s'adaptent souvent au-delà de 500 mètres. Marques *et al.*, (2020), ont montré un effet négatif des éoliennes pour les Milans noirs en migration, avec une diminution de la fréquentation des habitats dans un rayon d'environ 674 mètres autour des mâts (ce qui correspond à une surface de 143 hectares par éolienne). Le programme national « éolienbiodiversité » (LPO-ADEME-MEDDE-SER/FEE) signale que les Grues cendrées adoptent un comportement d'évitement du parc entre 300 et 1 000 mètres de distance.

L'orientation des alignements d'éoliennes a une influence sur les comportements des migrateurs qui abordent un parc éolien. Une ligne d'éoliennes parallèle à l'axe de migration principal provoque moins de modifications de comportement qu'une ligne perpendiculaire aux déplacements. Par exemple, sur le plateau de Garrigue Haute (Albouy *et al.*, 2001), les cinq éoliennes du parc de Port-la-Nouvelle, implantées perpendiculairement à l'axe de migration, provoquent cinq fois plus de réactions de traversée

que les dix éoliennes du parc de Sigean, implantées parallèlement à cet axe. En outre, les auteurs ont montré qu'un espace d'environ 200 mètres entre deux éoliennes semble suffisant au passage des passereaux et des rapaces de petite et moyenne envergures (faucons, éperviers, milans, Bondrée apivore) mais trop faible pour les oiseaux de plus grande envergure comme les cigognes ou le Circaète Jean-le-Blanc (aucun de ces derniers n'a été observé utilisant cet espace). Également, Roux *et al.*, (2013) ont constaté que des éoliennes implantées parallèlement au couloir de migration ne semblaient pas faire barrière aux mouvements des migrateurs. La littérature recommande de limiter l'emprise du parc sur l'axe de migration, dans l'idéal à moins de 1 000 mètres (Soufflot *et al.*, LPO, 2010; Marx *et al.*, LPO, 2017). Lorsque cette préconisation ne peut être respectée, il est recommandé d'aménager des trouées de taille suffisante pour laisser des échappatoires aux migrateurs. Soufflot *et al.*, (2010) évaluent la distance minimale d'une trouée à 1 000 mètres (1 250 mètres dans l'idéal, sans distinction du sens d'implantation des éoliennes). Ces mêmes auteurs recommandent également d'exclure les croisements de lignes d'éoliennes (configuration en croix, en « Y » ou en « L »).

Selon Gaultier *et al.*, (2019), l'impact de l'effet barrière sur les oiseaux migrateurs est encore difficile à évaluer et nécessiterait des travaux de recherche spécifiques.

1.5.1.3 Risque de collision

La mortalité des oiseaux peut résulter de collisions avec les pales ou avec la tour de la nacelle. Les petits passereaux pourraient également subir des barotraumatismes et être projetés au sol par les turbulences créées par la rotation des pales (Gaultier *et al.*, 2019). Il faut également noter qu'un faible taux de mortalité peut générer des incidences écologiques notables, pour les espèces menacées et pour les espèces à maturité lente et à faible productivité annuelle (Gaultier *et al.*, 2019).

Les différentes espèces interagissent différemment face à un parc éolien. Les espèces plus sensibles à l'effarouchement (limicoles, anatidés, grues, aigles, *etc.*), plus méfiantes vis-à-vis des éoliennes en mouvement, sont par conséquent moins sensibles au risque de collision. Les **espèces moins** farouches seront potentiellement plus sensibles à la mortalité par collision avec les pales (milans, buses, Faucon crécerelle, busards, martinets, hirondelles, *etc.*).

Les rapaces, les laridés et les passereaux migrateurs nocturnes sont généralement considérés comme les plus exposés au risque de collision avec les turbines (Souflot, 2010).

Certaines situations peuvent accroître les risques de collision avec les pales. Les principaux critères sont le nombre d'éoliennes, leur taille, la configuration du parc (cf. chapitre précédent sur l'effet barrière et le contournement), le contexte paysager, les hauteurs et types de vol des espèces, le comportement de chasse pour les rapaces et les phénomènes de regroupement pour les espèces en migration, principalement pour les migrateurs nocturnes. De même, les conditions météorologiques défavorables (brouillard, nuages bas, vent fort), constituent des situations à risque.

Certains rapaces, en particulier **les espèces à tendance charognarde** tels les milans, la Buse variable ou encore les busards peuvent être **attirées sur les parcelles cultivées lors des travaux agricoles** (notamment la fauche des prairies au printemps et les moissons en été) et par **l'ouverture des milieux** liée au défrichement.

Photo 1 : Exemple de situation à risque : brouillard en hauteur masquant tout ou partie des pales.

©Encis Environnement

Pendant les **migrations**, les collisions semblent survenir **plus particulièrement la nuit**. Les espèces qui ne migrent que de jour (rapaces, cigognes, fringilles, *etc.*) sont souvent capables d'adapter leurs trajectoires à distance. En effet, Albouy *et al.*, (2001), ont observé que **88 % des oiseaux changent leur trajectoire à la vue des éoliennes**. Ces comportements d'anticipation participent à la réduction des situations à risque.

1.5.2 Chiroptères

1.5.2.1 Généralités

Notion et tendance de population chez les chiroptères

Les chiroptères sont des espèces dites longévives présentant une longévité élevée, une maturité sexuelle tardive et un taux de reproduction faible avec un petit par an expliquant un très faible taux d'accroissement des populations (Culina *et al.* 2019, Kerbiriou *et al.*, 2015b, Froidevaux *et al.*, 2017). L'état des populations de chiroptères est encore mal connu mais le maintien de ces dernières repose sur la survie des adultes (Diffendorfer *et al.*, 2015, Lentini *et al.* 2015, Culina *et al.*, 2019). Bien que l'estimation des populations soit complexe à surveiller, et que la taille des populations est encore loin d'être connue, les paramètres démographiques et, par conséquent, le potentiel impact des décès sur la viabilité des populations de chauves-souris est un paramètre important à prendre en compte (Lenhert *et al.*, 2014, Ellison LE 2013).

Des études récentes au niveau national présentent différents patterns avec des tendances à l'augmentation pour la Barbastelle d'Europe, le Grand Murin, le Grand Rhinolophe, le Murin à oreilles échancrées, le Petit Rhinolophe, la Pipistrelle de Kuhl et le Rhinolophe euryale, et à l'inverse, des tendances à la diminution pour le Minioptères de Schreibers, la Noctule commune, la Noctule de Leisler, le Petit Murin, la Pipistrelle commune et la Sérotine commune (Tapeiro *et al.,* 2017, SFEPM 2016a, Bas *et al.,* 2020). Globalement, la tendance de population au niveau national sur l'ensemble des espèces de chiroptères est en diminution entre 2006 et 2018 (Bas *et al.,* 2020).

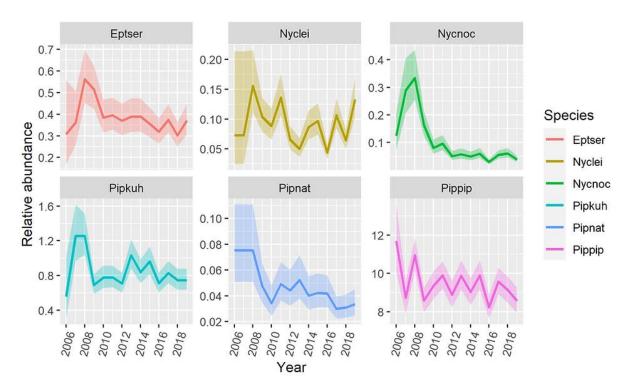


Figure 2 : Tendances des populations pour six espèces de chauves-souris en France entre 2006 et 2018 (Bas et al. 2020)

Impacts de l'éolien sur les chiroptères

La présence d'éoliennes en fonctionnement peut avoir deux types de conséquence sur les chiroptères :

- la perte d'habitat (abandon de certaines zones de chasse, de transit et/ou d'habitat de gîte);
- **la mortalité** (collision directe, barotraumatisme, écrasement dans les mécanismes de rouage, intoxication suite à l'absorption d'huile de rouage, *etc.*).

1.5.2.2 Perte et/ou altération d'habitat

Perte directe ou destruction d'habitats

Le premier impact en termes de perte d'habitat, est la destruction directe d'habitats de gîte, de chasse ou de déplacement. Ainsi, une destruction directe d'habitat est principalement impactante pour les espèces locales, notamment sur des habitats favorables aux chiroptères comme les boisements de feuillus ou mixte ou les haies (Barataud *et al.*, 2019, Kelm *et al.*, 2014, Eurobats 2017).

La perte d'habitat de gîte envisagée est la destruction d'arbres pouvant héberger différentes espèces de chiroptères. Les habitats privilégiés par les chauves-souris arboricoles sont généralement les forêts de feuillus matures et les arbres creux ou sénescents qu'ils soient au sein de boisements ou de haies (Kusch & Schotte 2007, Averback *et al.*, 2015 et Peste *et al.*, 2015). Ainsi, la perte de gîtes surtout dans les secteurs où ils sont rares aura un impact plus grand que des modifications d'habitats de chasse ou de transits (Brinkmann *et al.*, 2011, Amorim *et al.*, 2012).

Les pertes directes d'habitats de chasse et de déplacement auront pour conséquences un abandon du territoire de nourrissage, et/ou un changement de voies de déplacement, entrainant des conséquences similaires aux dérangements (phénomène détaillé dans les parties suivantes).

Dérangement par altération de la qualité de l'habitat de chasse

Plusieurs études relatent une modification de l'activité des chiroptères liée aux éoliennes. Ainsi, l'activité des chauves-souris est plus faible au niveau des éoliennes qu'au niveau de sites témoins, et est également liée au fonctionnement de la machine, et à la proximité des éoliennes entre elles (Millon *et al.* 2018, Minderman *et al.*, 2012, Minderman *et al.*, 2017, Cryan *et al.*, 2014a). Ce dérangement semble impacter plus fortement les chiroptères locaux, notamment avec des observations d'évitement plus marquées de mai à juillet que chez les migrateurs (Millon *et al.*, 2015, Lehnert *et al.*, 2014). Ce même dérangement apparait également être effectif lors des différentes saisons du cycle biologique des chiroptères (Schaub *et al.*, 2008, Stone *et al.*, 2009, Parsons *et al.*, 2003, Thomas 1995).

Cette altération de l'habitat de chasse provoque un impact au niveau des ensembles végétaux ainsi qu'au niveau local et plus particulièrement en fonction de la proximité des haies (Millon *et al.* 2015, Barré *et al.*, 2018).

Ce type de dérangement touche de multiples espèces de chiroptères, qu'elles soient soumises ou non aux risques de collision avec l'éolien. C'est le cas notamment pour la Barbastelle d'Europe, les murins sp., la Noctule commune, la Noctule de Leisler, la Pipistrelle commune et les oreillards sp (Roemer *et al.,* 2017, Roekele *et al.,* 2016, Barré *et al.,* 2018).

Certaines études relèvent également la possibilité d'abandon des zones de chasse des espèces les plus sensibles aux ultrasons émis par les éoliennes, à l'instar de la Sérotine commune (Bach 2001, 2002 et 2003; Bach and Rahmel 2004). L'étude la plus récente sur le sujet (Brinkmann *et al.*, 2011) indique qu'une perte d'habitat ou un évitement de la zone concernée pourrait avoir lieu à cause de ces émissions d'ultrasons.

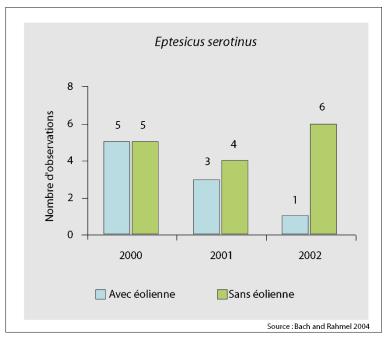


Figure 3 : Diminution de l'activité de la Sérotine commune sur le parc éolien de Midlum (Bach and Rahmel 2004)

Perte des voies de migration ou des corridors de déplacement

Les chauves-souris sont en partie des espèces migratrices parfois sur de longues distances comme la Pipistrelle de Nathusius ou la Noctule commune (Hutterer *et al.*, 2005, Arthur et Lemaire 2015). Ces espèces migratrices après avoir reconstitué leurs réserves alimentaires à la sortie de l'hibernation, migrent dès le printemps vers des zones où elles passent l'été, pour ensuite revenir hiberner sur la zone initiale par une deuxième migration en fin d'été et début d'automne (Dechmann *et al.*, 2014, Dechmann *et al.*, 2017).

Bien que les voies de migration chez les chiroptères soient encore assez mal connues, certaines études relatent des axes importants au niveau du littoral et des vallées fluviales, à la fois pour des espèces migratrices de longue distance que pour les espèces régionales (Jamin *et al.*, 2020, Kunz *et al.*, 2007b, Cryan *et al.*, 2014b, Hayes *et al.*, 2019b, Furmankiewicz & Kucharska 2009, Telleria *et al.*, 2009, Cryan *et al.*, 2011). Ainsi, le dérangement des chiroptères sur les voies de migration peut impacter les chiroptères sur de longues distances en créant des « effets barrières » (Voigt *et al.*, 2012, Brinkmann *et al.*, 2011). À noter cependant que les espèces migratrices semblent moins sensibles aux dérangements par les parcs éoliens que les individus locaux (Million *et al.*, 2015, Lehnert *et al.*, 2014).

Parallèlement, à la perte de voies de migration, il existe une perte de corridors de déplacement à l'échelle locale. Cette dernière est également susceptible de provoquer un abandon de gîtes pouvant engendrer une augmentation des dépenses énergétiques due à l'évitement des parcs et à la modification des corridors (Bach *et al.*, 2003 et Dubourg-Savage 2005). De nombreuses espèces sont ainsi susceptibles

d'être impactées par la modification des corridors de déplacements locaux (Barré *et al.,* 2018, Roemer *et al.,* 2017, Roekele *et al.,* 2016).

1.5.2.3 Mortalité directe et indirecte

Il existe de multiples causes de mortalité chez les chiroptères au niveau mondial comme le « White-Nose Syndrome », les mortalités intentionnelles, les accidents, les mortalités biotiques et abiotiques, *etc.*, dans lesquelles l'éolien affiche une assez forte proportion (O'Shea *et al.*, 2016).

Dans le cadre de l'éolien, la mortalité des chauves-souris peut être liée à différents facteurs : collision directe, barotraumatisme, écrasement dans les mécanismes de rouage, intoxication suite à l'absorption d'huile de rouage, *etc.*

La mortalité par contact direct ou indirect avec les aérogénérateurs reste l'impact le plus significatif des parcs éoliens sur les chiroptères (Brinkmann *et al.,* 2011). Ces collisions ont pour conséquence des blessures létales ou sublétales (Grodsky *et al.,* 2011).

Un état des lieux des connaissances avec une analyse approfondie de nombreuses publications scientifiques a été menées sur la base de synthèses bibliographiques récentes sur le sujet (Gaultier *et al.*, 2019, Schuster *et al.*, 2015). Cet état des connaissances sert ainsi de base à l'argumentaire suivant.

Mortalité directe et indirecte

La **mortalité directe** est le type de mortalité le plus évident résultant de la collision directe des chauves-souris avec les pales des éoliennes en rotation (Arnett *et al.,* 2005, Horn *et al.,* 2008).

Parallèlement, d'autres cas de mortalité cette fois-ci indirecte sont documentés.

Lors de la rotation des pales, s'opère un phénomène de pression/décompression entre les pales et le mât. La chute brutale de la pression de l'air pourrait impliquer de sérieuses lésions internes des individus passant à proximité, ce phénomène est nommé barotraumatisme. Dans une étude réalisée au Canada (Baerwald *et al.,* 2008), 92 % des cadavres retrouvés sous les éoliennes présentaient, après autopsie, les caractéristiques d'un barotraumatisme (hémorragie interne dans la cage thoracique ou la cavité abdominale). Certains auteurs remettent en question l'existence même de ce phénomène (Houck 2012; Rollins *et al.,* 2012). Grodsky *et al.,* (2011) et Rollins *et al.,* (2012) soulignent que certains facteurs environnementaux (temps écoulé après le décès, température, congélation des cadavres pour leur conservation) seraient à même de reproduire les critères diagnostiques d'une hémorragie pulmonaire concluant au barotraumatisme.

Trois autres phénomènes sont à relater bien que moins mentionnés dans la littérature scientifique. La rotation des pales d'éoliennes pourrait provoquer un vortex (tourbillon d'air) susceptible de piéger les chauves-souris passant à proximité (Horn *et al.,* 2008). De même, les courants d'air créés par la rotation des pales seraient susceptibles d'entrainer des torsions du squelette des chiroptères passant à proximité des pales, ce qui pourrait aboutir à des luxations ou des fractures des os alaires (Grodsky *et al.,* 2011). Enfin, Horn *et al.,* (2008) ont observé des cas de collision sublétale où des individus percutés par des pales ont continué à voler maladroitement. Ce type de collision aboutissant certainement au décès des

individus en question, ne serait ainsi pas comptabilisé dans les suivis de mortalité opérés dans un rayon proche des éoliennes, puisque les cadavres se trouveraient alors à bonne distance du site.

Facteurs influençant la mortalité

La sensibilité des chiroptères à l'éolien

Il existe une corrélation significative entre les espèces sensibles au risque de collision sur les parcs éoliens, et leurs préférences en termes de hauteur de vol (Roemer *et al.,* 2017).

Ainsi parmi les espèces de chiroptères présentent en Europe, deux principaux groupes peuvent être créés :

- Les espèces se déplaçant et chassant en plein ciel, dites de « haut-vol » (molosse, noctules)
 et celles de lisières susceptibles d'évoluer régulièrement en hauteur (pipistrelles,
 minioptères, sérotines). Ces espèces sont considérées comme particulièrement sensibles
 au risque de collision (Dürr 2021).
- Les espèces spécialistes et majoritairement associées aux milieux forestiers, bocagers ou humides, qui, dans la grande majorité de leurs déplacements, restent à proximité des structures arborées et dépassent rarement la canopée (Barbastelle d'Europe, murins sp., oreillards sp., rhinolophes sp.). Ces espèces présentent un risque de collision avec les éoliennes assez faible (Dürr 2021).

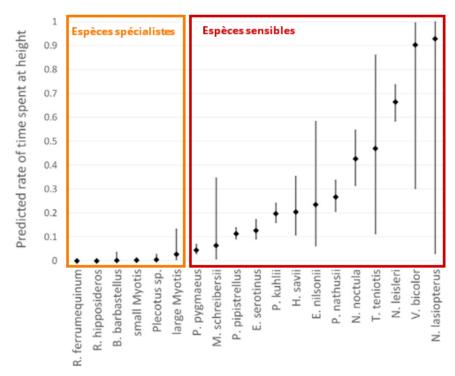


Figure 4 : Ration du temps passé en hauteur pour chaque espèce de chiroptères (Adapté de Roemer et al., 2017).

La caractéristiques morphologiques et biologiques des chauves-souris

Certaines espèces de chiroptères ont des caractéristiques morphologiques et des spécificités écologiques qui semblent être un facteur important dans le risque de collision. Hull et Cawthen (2013) et

Rydell et al., (2010) ont ainsi démontré les similarités entre espèces sensibles à l'éolien telles que les noctules, les pipistrelles et les sérotines en Europe. Il s'agit d'espèces dites glaneuses ou de poursuites de plein air aux ailes longues et effilées, adaptées à ce type de vol et utilisant des signaux à faible largeur de bande et à forte intensité. Rydell et al., (2010) ont conclu que 98 % des espèces victimes de mortalité par collision sont des espèces présentant ces caractéristiques morphologiques et écologiques. Les espèces de haut vol, de grande taille (rythme d'émission lent impliquant un défaut d'appréciation de la rotation des pales), les espèces au vol peu manœuvrable, ainsi que les espèces chassant les insectes à proximité des sources lumineuses (balisage nocturne des éoliennes), sont donc les plus sujettes aux collisions.

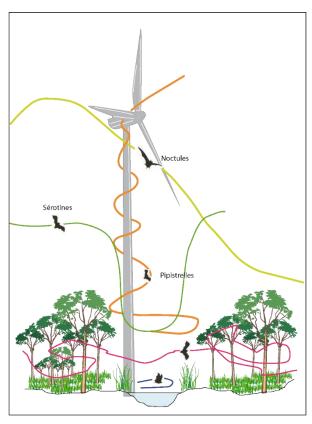


Figure 5 : Représentation schématique des comportements de vols de chauves-souris à proximité d'une éolienne

La saisonnalité et le comportement des chiroptères

Les chiroptères possèdent un cycle biologique présentant une phase d'hibernation de novembre à février, une phase de migration printanière vers les gîtes estivaux de mars à mai, une phase de misebas au sein de ces gîtes de juin à juillet-aout, une période de migration vers les secteurs de swarming (accouplements) et vers les gîtes hivernaux d'aout à octobre.

Sur l'ensemble de ces saisons, hormis l'hibernation, des cas de mortalités liés aux éoliennes sur des populations locales où migratrices sont observées (Brinkmann *et al.,* 2011, Voigt *et al.,* 2012). Cependant, la majorité des auteurs s'accordent sur le fait que la saisonnalité joue un rôle prépondérant sur la mortalité des chiroptères par collision avec des aérogénérateurs : l'activité chiroptérologique, et donc la mortalité, sont les plus élevées en fin d'été-début d'automne, ce qui correspond à une période de migration des chauves-souris (Alcalde 2003, Arnett *et al.,* 2008, Rydell *et al.,* 2010a, Brinkmann *et al.,* 2011, Amorim *et al.,* 2012, Limpens *et al.,* 2013). Des hécatombes de mortalité ont également été relevées au printemps et en début d'été dans le sud de l'Europe (Georgiakakis *et al.,* 2012, Beucher *et al.,* 2013). Cette observation a ainsi conduit de nombreux auteurs à considérer que la mortalité par collision est intrinsèquement liée au comportement migratoire, et plus particulièrement automnal. Si ce fait est avéré, ce n'est pas seulement le comportement migratoire des chauves-souris qui induirait cette mortalité importante (collisions lors de vols directs), mais plutôt un comportement saisonnier. Les espèces

migratrices ne seraient en fait pas forcément plus touchées que les populations locales (Behr et al., 2007; Brinkmann et al., 2006; Rydell et al., 2010; Voigt et al., 2012). Ainsi, Lenhert a mené une étude en 2014 montrant une mortalité supérieure sur les individus locaux (72 %) que sur les individus migrateurs (28 %) durant la période de migration de la Noctule commune (espèces le plus impactée en Allemagne). Parmi les individus impactés, la proportion de juvéniles est élevée (38 % chez les individus locaux et 32 % chez les migrateurs), et le sex-ratio est équilibrés pour les individus locaux mais montre une majorité de femelles chez les individus migrateurs (62 %). Ces résultats sur la différence de comportement entre les mâles et les femelles, notamment chez la Noctule, a également été relevée par Roeleke en 2016 avec un évitement plus marqué des mâles au niveau des parcs éoliens que les femelles en période estivale. Ceci possiblement en raison des contraintes énergétiques liées à la lactation, ce qui engendre une augmentation du risque de collision sur les femelles. Selon Cryan et Brown (2007), la période migratoire automnale impliquerait en fait une activité accrue d'individus lors des pauses migratoires destinées à reconstituer les réserves, gîter ou se reproduire, augmentant ainsi le risque de collisions. Le besoin de stocker des réserves énergétiques en vue de l'hibernation serait également la cause d'une activité accrue en automne (Furmankiewicz et Kucharska 2009). De plus, lors des migrations, les chauves-souris traversent des zones moins bien connues que leurs territoires de chasse et/ou n'émettent que peu ou pas d'émissions sonar lors de ces trajets, elles seraient ainsi moins à même de repérer les pales en mouvement (Bach 2001 in Behr et al., 2007; Johnson et al., 2003).

Les conditions météorologiques et le cycle circadien

Les conditions météorologiques influent directement ou indirectement sur la disponibilité en ressource alimentaire (insectes majoritairement pour les chauves-souris européennes) et sur les conditions de vol des chiroptères, donc sur le taux de mortalité par collision (Baerwald and Barclay 2011).

Des analyses menées sur les résultats obtenus lors d'écoutes en hauteur ont montré une relation significative entre les variables de vitesse de vent, de température, d'heure de la nuit et l'activité des chiroptères (Labouré ENCIS Environnement 2021).

Concernant la **vitesse de vent**, Rydell *et al.*, (2010) ont noté des activités maximales pour une vitesse de vent entre 0 et 2 m/s puis, de 2 à 8 m/s, une activité diminuant pour devenir inexistante au-delà de 8 m/s. Selon, Martin *et al.*, (2015), la plupart des nuits lors desquelles une mortalité s'est produite (81,5 %), ont eu des vitesses de vent moyennes faibles (≤5 m/s mesurées au sol), et toutes les victimes ont été constatées lors de nuits présentant une vitesse moyenne du vent <10 m/s. Behr *et al.*, (2007) arrivèrent aux mêmes conclusions pour des vitesses de vent supérieures à 6,5 m/s. Si la plupart des études sur le sujet concordent sur ce phénomène, les valeurs seuils sont variables et dépendantes de la localisation des sites, de la période de l'année, des espèces concernées. Arnett *et al.*, (2008) estimèrent pour deux parcs éoliens des Etats-Unis que la mortalité aurait été réduite de 85 % si les aérogénérateurs avaient été arrêtés pour des valeurs de vent inférieures à 6 m/s en fin d'été-début d'automne. À noter cependant que toutes les chauves-souris ne répondent pas de façon similaire à la vitesse de vent. Les espèces de haut-vol apparaissent plus tolérantes aux vitesses de vent supérieures à 7 m/s (Wellig *et al.*, 2018, Frick *et al.*, 2017, Voigt *et al.*, 2015). Enfin, la rotation des pales d'éoliennes avec la vitesse de vent rend difficile

la localisation des chiroptères par écholocation qui n'arrivent pas à percevoir les bouts de pales dont la vitesse est de 100 et 150 m/s (Grodsky *et al.,* 2011, Long *et al.,* 2009, Rydell *et al.,* 2010a).

La **température** joue également un rôle sur l'activité chiroptérologique. Si plusieurs auteurs concluent à une corrélation positive entre augmentation de la température et activité (Redell *et al.,* 2006 ; Arnett *et al.,* 2006, 2007 ; Baerwald and Barclay 2011, Voigt *et al.,* 2015), d'autres ne considèrent pas ce paramètre en tant que facteur influençant l'activité chiroptérologique (Horn *et al.,* 2008 ; Kerns *et al.,* 2005). Des études récentes ont cependant permis de mettre en évidence une augmentation marquée de l'activité chiroptérologique entre 10 et 25 °C (Labouré 2021, Behr *et al.,* 2017, Heim *et al.,* 2016, Martin *et al.,* 2015).

L'activité des chiroptères est également corrélée à d'autres variables météorologiques telles que la pression atmosphérique, l'humidité relative, le taux de précipitation, la couverture nuageuse, le brouillard ou encore le rayonnement lunaire (Behr *et al.*, 2017, Heim *et al.*, 2016, Voigt *et al.*, 2015, Cryan *et al.*, 2014, Limpens *et al.*, 2013, Amorim *et al.*, 2012, Behr *et al.*, 2011, Brinkmann *et al.*, 2011, Baerwald and Barclay 2011, O'Donnell *et al.*, 2010, Bach & Bach 2009, Horn *et al.*, 2008, Kerns *et al.*, 2005). Cependant, les opinions sur ces autres paramètres météorologiques sont d'autant plus mitigées. Il semble toutefois plus vraisemblable que ces paramètres influent de manière concomitante sur l'activité des chiroptères ou l'abondance d'insectes (Corten and Veldkamp 2001, Behr *et al.*, 2011).

Enfin, le cycle circadien influence également l'activité chiroptérologique et ainsi le risque de collision (ENCIS Environnement, Labouré 2022). Les pipistrelles, noctules et sérotines sont souvent considérées comme des espèces crépusculaires et sont remplacées peu à peu au cours de la nuit par des espèces plus nocturnes à l'instar des barbastelles, murins et oreillards (Barataud, 2012). D'autres études suggèrent un regain d'activité à l'aube (Swift 1980). Les noctules, et plus particulièrement la Noctule commune, affichent ce second pic d'activité en fin de nuit (Kronwitter 1988, Rachwald 1992, Kanuch 2007, Arthur et Lemaire 2015). Ainsi, Behr et al., en 2017 ont démontré que l'activité des chiroptères est maximale pendant la première moitié de la nuit. Le groupe des noctules (principalement la Noctule commune) est actif avant le coucher du soleil et avant le groupe des pipistrelles. Après le premier quart de la nuit, l'activité commence à diminuer, et diminue continuellement jusqu'au lever du soleil, avec une chute plus forte peu avant le lever du soleil. Parfois, un pic d'activité plus faible a été enregistré en fin de nuit, ce phénomène est principalement dû à l'activité des espèces de noctule. La Pipistrelle de Nathusius, montre un schéma légèrement différent de celui des autres espèces avec une activité culminant au milieu de la nuit. Ces résultats sont régulièrement observés sur les études de l'activité des chiroptères et peuvent varier en fonction de la saisonnalité (Arthur et Lemaire 2015, Newson et al., 2015, Labouré 2021).

Ainsi, la mise en place de mesure sur la base des paramètres environnementaux apparait comme une solution efficace pour diminuer les risques de collisions chez les chiroptères (Behr *et al.,* 2017, Good *et al.,* 2016, Martin *et al.,* 2015, Hein *et al.,* 2014).

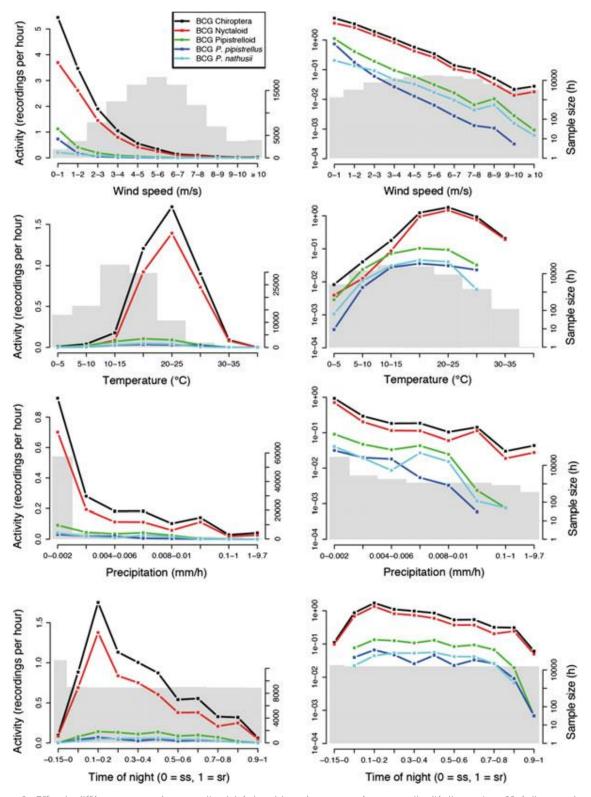


Figure 6 : Effet de différents paramètres sur l'activité des chiroptères mesurée en nacelle d'éolienne (sur 69 éoliennes dans 35 sites dans 5 différentes régions naturelles en Allemagne en 2008) (Behr et al., 2017)

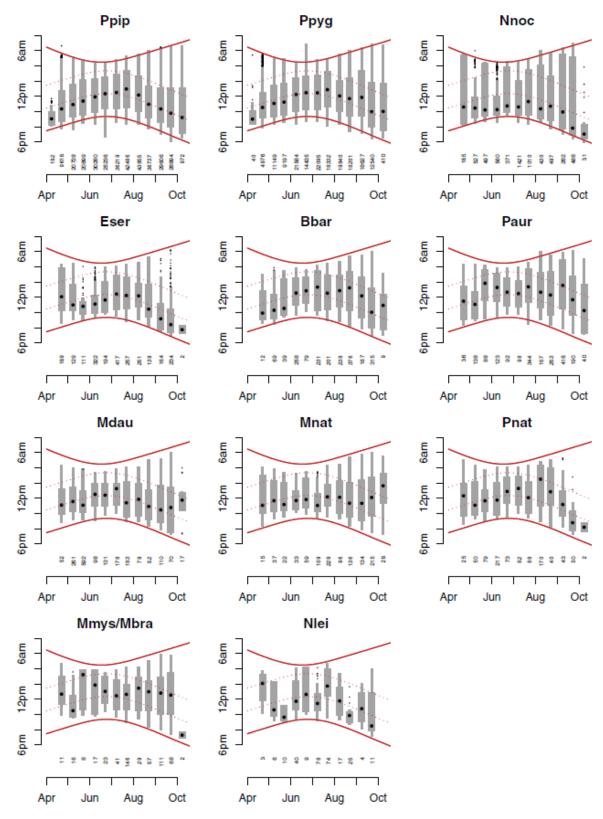


Figure 7 : Modèles d'activité nocturne de plusieurs espèces de chiroptères tout au long de la saison par rapport au coucher du soleil (Newson et al., 2015)

Le type d'habitats

Les habitats présents au niveau des aménagements des parcs éoliens et dans les secteurs environnants influencent le risque de mortalité chez les chiroptères (Brinkmann *et al.,* 2011, Hensen 2004, Grindal & Brigham 1998).

Dans un premier temps, une mortalité par destruction d'habitats, et plus particulièrement dans le cas d'abattage d'arbres à cavités pouvant héberger des gîtes de chiroptères arboricole est à relever. Ce premier risque de mortalité est à considérer durant la phase de travaux des aménagements du parc éolien et devient inexistant une fois les éoliennes misent en exploitation.

Dans un second temps, les habitats présents à proximité des éoliennes influencent les cas mortalités des chauves-souris. Rydell *et al.*, en 2010 observent une mortalité de 0 à 3 chiroptères/éolienne/an en openfield, de 2 à 5 chiroptères/éolienne/an en milieu plus hétérogène, et de 5 à 20 chiroptères/éolienne/an sur la côte et en forêt (surtout sur les promontoires et crêtes). Ces résultats sont confirmés par plusieurs études :

- Concernant les plans d'eau et les côtes, l'implantation d'éoliennes à proximité de ces habitats représente un fort risque de mortalité sur les chiroptères en raison de l'abondance d'insectes (Ahlen *et al.,* 2003, Eurobats 2016).
- Concernant les secteurs boisés, une activité chiroptérologique plus élevée est observée, avec une influence significative de la distance aux boisements sur la densité d'espèces de bas et moyen vol (Pipistrelle commune, Pipistrelle de Kuhl, Sérotine commune) mais les espèces de haut-vol ne semblent pas répondre à cette variable (Pipistrelle de Nathusius, Noctule commune, Noctule de Leisler) (Roemer *et al.,* 2019). Mathews *et al.,* en 2012 montrent également que la présence de bois dans un rayon de 1 500 m de parcs éoliens semble réduire le risque pour les pipistrelles suivant les lisières mais augmente le risque pour les noctules.

Parallèlement, **les haies** (à l'instar des lisières boisées) sont très importantes pour les chiroptères en fonction de leurs qualités et concentrent l'activité (Lacoeuilhe *et al.,* 2018, Lacoeuilhe *et al.,* 2016, Kelm *et al.,* 2014, Boughey *et al.,* 2011). Ainsi, l'étude de Kelm *et al.,* en 2014, présente une activité chiroptérologique concentrée dans les 50 premiers mètres à la haie (85 % des contacts enregistrés) qui devient anecdotique à partir de 200 m, ainsi que des espèces plus proches des haies (murins sp., Pipistrelle commune, Barbastelle d'Europe, Sérotine commune) que d'autres (Noctule commune, Pipistrelle de Nathusius).

Selon des études réalisées en Allemagne (Dürr 2003), plus la distance entre le mât de l'éolienne et les structures arborées avoisinantes (haies, lisières forestières) est faible et plus les cas de mortalité sont fréquents. Ainsi, plusieurs articles scientifiques et doctrines, à différentes échelles, recommandent une distance entre le bout de pale des éoliennes et les canopées des haies et boisements de 50 m (Dürr 2007, Kelm *et al.,* 2014, Natural England 2014) jusqu'à 200 m (Eurobats 2017, SFEPM 2016).

- Concernant les milieux ouverts, bien que moins attractifs pour la plupart des chiroptères ces habitats ne sont pas pour autant négligeables, notamment pour les espèces chassant en milieux ouverts comme les noctules et qui présentent un haut risque de collision (Bas *et al.*, 2014). Ainsi, même les

espaces « défavorables » aux chiroptères comme les grandes plaines agricoles peuvent causer de fortes mortalité (Brinkmann *et al.,* 2011).

Quel que soit le milieu d'implantation des éoliennes, il apparait nécessaire de quantifier l'activité des chiroptères dans ces secteurs et de mettre en place des mesures adaptées pour éviter tout risque de collision (Kelm *et al.*, 2014, Boughey *et al.*, 2011). En effet, Lintott *et al.*, en 2016 relèvent le fait que des sites ayant été perçus comme "pauvres" en termes de qualité pour les chiroptères lors des inventaires pré-implantation, peuvent montrer des victimes après la construction des éoliennes. Cela pourrait être lié à un changement de comportement après l'implantation des éoliennes, et qui nécessiterait l'élaboration de stratégies d'atténuation, avec une compréhension du comportement des chauves-souris pouvant différer sur les sites après que les turbines ont été construites.

Le modèle d'éolienne

Parmi les multiples facteurs influençant le risque de mortalité des chiroptères au niveau des parcs éoliens, le modèle d'éolienne choisi a une importance. En effet, plusieurs études se sont intéressées à ce sujet et ont permis de démontrer plusieurs phénomènes :

- La taille du rotor. Plus les rotors sont grands plus la mortalité des chiroptères augmente (Arnett *et al.,* 2008). En effet, la longueur des pales est le facteur qui influence le plus le risque de collision avec les chiroptères devant la hauteur de nacelle (Mathews *et al.,* 2016, Rydell *et al.,* 2010a).
- La garde au sol. Plus la garde au sol est basse, plus le risque de collision est accru pour les chiroptères. Ainsi, les gardes au sol inferieures à 30 m présentent de fort risque de mortalité pour les chiroptères notamment sur des espèces jusqu'alors peu concernées par ce type d'impact, de par leur hauteur de vol entre autres facteurs (Roemer et al., 2017, Heitz et al., 2017, Hein et al., 2016).
- La couleur des éoliennes. Les couleurs blanche et gris clair des éoliennes semblent également influencer la présence d'insectes, et ainsi engendrer d'éventuels comportements de chasse à risque à proximité des éoliennes (Long *et al.,* 2011, Kunz *et al.,* 2007).

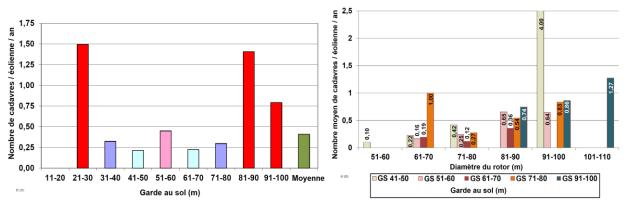


Figure 8 : Nombre de mortalités de chauves-souris par éolienne et par an en fonction de la garde au sol et du diamètre de rotor (Traduit de Dürr 2019, SFEPM 2020)

Ainsi, en 2020, la SFEPM préconise :

- De proscrire les hauteurs de garde inferieures à 30 m.
- De limiter la taille des rotors à moins de 90 m ou si les rotors sont supérieurs à 90 m de proscrire les gardes au sol inferieures à 50 m.

Les phénomènes d'attractions

Comme nous l'avons abordé précédemment, les éoliennes peuvent elles-mêmes jouer un rôle localement attractif pour les chiroptères occasionnant des événements de mortalité (Cryan *et al.,* 2014a).

Les aérogénérateurs peuvent être confondus avec des arbres pouvant potentiellement comporter des **gîtes**; tous les auteurs s'accordent sur ce sujet (Cryan and Brown 2007; Cryan *et al.*, 2014; Hull and Cawthen 2013; Kunz *et al.*, 2007).

Un autre phénomène est l'attraction des insectes par les éoliennes. Une partie des espèces de chiroptères sont assez opportunistes pour la nourriture en exploitant des ressources faciles telles que des insectes actifs nocturnes autour des éoliennes, ou espèces diurnes se reposant sur les machines (Bennett et al., 2017, Foo et al., 2017, Rydell et al., 2016, Cryan et al., 2014). La production de chaleur de certains types d'éoliennes pourrait concentrer les insectes, et donc augmenter le risque de mortalité des chiroptères par collision (Rydell et al., 2010b, Horn et al., 2008, Ahlén 2002). De même, Horn et al., (2008) ont vérifié que les abondances d'insectes sont supérieures à proximité des lumières de la FAA (Federal Aviation Administration), ce qui pourrait également être un facteur d'attraction pour les chiroptères. Dans la même étude, des images thermiques ont pu montrer des individus chassant activement autour de la nacelle et des pales. Johnson et al., (2004) trouvent également des activités supérieures à proximité des sources lumineuses des éoliennes bien qu'une incidence directe sur la mortalité n'ait pu être mise en évidence. Outre la présence de nourriture, certaines espèces de chauves-souris dites héliophiles (Sérotine commune par exemple) ont assimilé que des nuages d'insectes pouvaient être présents au niveau de sources lumineuses, elles peuvent donc également être attirées par la luminosité, ce y compris en l'absence d'insectes. Beucher et al., (2013) ont aussi mis en évidence l'influence du facteur luminosité sur l'attractivité des éoliennes pour les insectes et les chauves-souris. La couleur des éoliennes et certains effets acoustiques sont aussi suspectés d'attirer les insectes volants et les chauves-souris dans la zone à risque (Long et al., 2011, Kunz et al., 2007). Ces phénomènes d'attractions des chiroptères sont confirmés par des études récentes portant sur des analyses des contenus stomacaux de chauves-souris mettant en évidence une correspondance entre les insectes présents à la surface des mâts et dans l'atmosphère autour les éoliennes (Foo et al., 2017, Rydell et al., 2016).

Les éoliennes peuvent également être des sources **d'écoulement d'eau** à l'extérieur de l'éolienne durant des nuits sans pluie (hypothèse de phénomènes de condensation) sur des épisodes courts mais intenses, pouvant provoquer un attrait des chiroptères qui reste à confirmer (Roch *et al.*, 2018).

À noter cependant que les comportements d'approches sont nettement plus nombreux lorsque l'éolienne est à l'arrêt, et ce dans des conditions environnementales proches, signifiant que les deux concepts de répulsion et d'attraction coexistent (Cryan *et al.,* 2014a).

Conséquences de la mortalité sur les populations de chiroptères

Comme expliqué précédemment, la notion de population chez les chiroptères est complexe à estimer. Cependant, il apparait important de prendre en compte l'étude de Frick *et al.*, menée en 2017.

Cette étude montre que les taux actuels de mortalité dues aux éoliennes apparaissent suffisamment élevés pour modifier considérablement la probabilité de stabilité de la population. Le risque d'extinction dans une gamme de scénarios démographiques plausibles pour des chauves-souris cendrées aux États-Unis serait plus fort, ces chiroptères sont proches des noctules européennes. La mortalité due aux éoliennes pourrait ainsi entraîner une réduction de 50 % de la taille de la population en seulement 50 ans, même dans un scénario optimiste d'une population de chauves-souris cendrées aussi importante que 10 millions de chauves-souris et avec un taux de croissance annuel moyen de 1 % par an, qui soutiendrait une croissance démographique stable. Cette étude souligne également que pour les chiroptères migrateurs, la mortalité liée aux éoliennes est susceptible d'impacter la viabilité des populations sur des scénarios démographiques probables. Elle suggère qu'à une échelle locale, l'implantation d'éoliennes pourrait suffire à faire chuter les effectifs d'une population jusqu'à l'extinction sur un pas de temps relativement court des cent prochaines années. Le graphique suivant représente ainsi les contours isolignes des déclins de population projetés après 50 ans de croissance, simulée avec une mortalité proportionnelle des chauves-souris cendrées, causées par les éoliennes, selon des combinaisons de tailles de populations initiales possibles (Ni) et de taux de croissance de population (λ). Les isolignes affichent les combinaisons de Ni, et où la population médiane de 10 000 simulations après 50 ans de croissance simulée était stable (ligne noire) ou a diminué de 25 %, 50 %, 75 %, 90 % et 95 %. La ligne pointillée montre l'isoligne de la stabilité de la population sans mortalité due aux éoliennes.

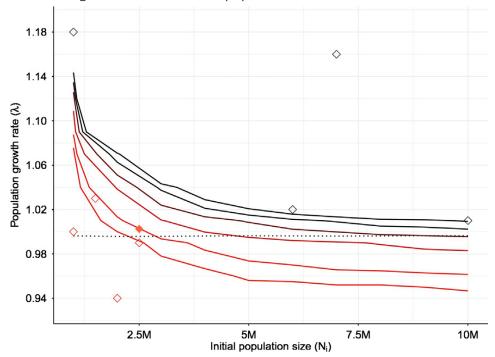


Figure 9 : Contours isolignes des déclins de population projetés après 50 ans de croissance simulée avec une mortalité proportionnelle des chauves-souris cendrées causées par les éoliennes selon des combinaisons de tailles de population initiales possibles (Ni) et de taux de croissance de population (λ) (Frick et al., 2017)

Ainsi, la question du taux de mortalité acceptable se pose. Quelques études ont essayé de répondre à cette question via des méthodes de calcul estimant un nombre de cadavre par éolienne et par an, variant entre un et deux pour les chiroptères (Behr *et al.*, 2017, Brinkmann *et al.*, 2011).

Plusieurs études alertent sur le fait que, pour faire progresser la conservation des chauves-souris migratrices, il est essentiel de comprendre leurs modèles de migration. L'identification des schémas de

déplacement permettrait alors de planifier l'emplacement des parcs éoliens pour atténuer les impacts sur les populations de chauves-souris. Cette information pourrait également être utilisée pour établir des normes pour une réduction « intelligente » (Jamin *et al.,* 2020, Hayes *et al.,* 2019b, Cryan *et al.,* 2014b, Kunz *et al.,* 2007b).

Cet état des connaissances indique tout d'abord un effet avéré potentiellement important de l'exploitation des parcs éoliens sur les populations de chiroptères. Les publications scientifiques mentionnées constituent parmi les seuls retours d'expérience en la matière, nombre de suivis comportementaux et de mortalité n'étant pas accessibles ou disponibles. Les diverses hypothèses avancées et souvent vérifiées ne représentent ainsi pas une seule cause de perturbation ou de mortalité des chiroptères par les éoliennes mais constituent différents facteurs agissants conjointement et dépendant des situations locales.

2.1 Méthodologie et démarche générale

Le suivi environnemental analyse les impacts du projet sur l'avifaune et les chiroptères et, pour les installations soumises à autorisation, sur toute espèce protégée identifiée dont la sensibilité à l'éolien est avérée et présentant un enjeu dans l'évaluation environnementale préalable (dont l'étude d'impact). Puis, les conclusions de cette dernière sont comparées avec les impacts de ce suivi environnemental. En application du principe de proportionnalité, l'intensité du suivi à mettre en œuvre dépendra des espèces présentes et des enjeux identifiés sur le site, ainsi que de l'impact résiduel déterminé par l'évaluation environnementale pour ces espèces. Pour les installations soumises à autorisation, le suivi mené par l'exploitant devra explicitement se référer aux mesures préconisées par l'étude d'impact et rappeler les données ayant permis de qualifier et quantifier les impacts résiduels du parc éolien précisés par cette dernière.

L'intensité du suivi à mettre en œuvre est défini selon plusieurs critères (espèces observées, statuts de conservation, statuts règlementaires, tailles et dynamiques de population, sensibilité, note de risques, *etc.*).

Avifaune

La sensibilité d'une espèce au risque de collision, comprise entre 0 et 4, correspond au rapport entre la mortalité recensée en Europe (Dürr, mises à jour régulières) et la taille de la population concernée. Les chiffres des populations européennes sont ceux publiés par BirdLife International (European Birds of Conservation Concern – Populations, trends and national responsibilities, BirdLife, 2017).

Chiroptères

La sensibilité et la vulnérabilité sont regroupées sous la forme d'un seul coefficient pour les chiroptères. L'indice utilisé est ainsi la **note de risque**. Cette note, comprise entre 1 et 4, correspond au croisement entre le statut de conservation UICN national et le taux de mortalité en Europe. **Cet indice inclus ainsi la sensibilité et défini un risque pour les populations d'espèces.** Concernant les chiroptères, il n'existe effectivement pas d'évaluation des populations européennes ou nationales assez fiables, la vulnérabilité ne peut être définie avec précision d'où l'indice de risque utilisé.

Pour le parc éolien de Pièce de Vignes (2022), le rapport de suivi environnemental remis à l'inspection des installations classées sera composé des suivis suivants :

- Suivi de l'activité des chiroptères ;
- Suivi de mortalité de l'avifaune et des chiroptères.

Le parc éolien de Pièce de Vignes a fait l'objet d'un suivi environnemental (mortalité des oiseaux et des chiroptères ; activité des chiroptères) en 2016 (Écosphère, 2016b).

2.2 Suivi d'activité des chiroptères

2.2.1 Objectif et paramètres à prendre en compte

Le suivi de l'activité des chauves-souris permet d'estimer l'impact direct ou indirect des éoliennes sur cet état de conservation, en prenant en compte l'ensemble des facteurs influençant la dynamique des populations. Ce suivi porte sur chacune des phases du cycle biologique des chauves-souris (transits printaniers et gestation, mise-bas et élevage des jeunes, transits automnaux et swarming).

Les paramètres faisant l'objet du suivi de l'activité des chiroptères sont déterminés dans l'étude d'impact en fonction des enjeux et des impacts potentiels identifiés sur le parc éolien. Ainsi, ce suivi examine des paramètres tels que l'état des populations sur le site (diversité spécifique, activité d'une espèce donnée, etc.), le comportement des chauves-souris en vol, les périodes et conditions de présence des individus, etc.

2.2.2 Méthodologie et pression d'inventaire

2.2.2.1 Inventaires ultrasoniques automatiques en nacelle

Le protocole d'écoute en nacelle a pour but de réaliser des inventaires sur une longue période et à hauteur de nacelle d'éolienne.

D'après l'étude d'impact (Tencia, 2006) de la ferme éolienne de Pièces de Vignes, aucune espèce n'est présente à proximité directe du parc. Une Pipistrelle commune, une Sérotine commune et un Oreillard sp. ont toutefois été contactés dans un rayon d'un kilomètre autour de la ferme éolienne. Aucune écoute en hauteur n'a été réalisée.

2.2.2.1.1 Pression d'inventaire

L'étude d'impact (Tencia, 2006) conclut à un site non favorable et donc à un **impact résiduel négligeable** sur les chiroptères.

Les modalités prévues initialement dans l'étude d'impact ne prévoient qu'un suivi de mortalité. Le protocole mis en place lors de la présente étude sera donc conforme au protocole national de suivi environnemental des parcs éoliens révisé en 2018.

2.2.2.1.2 Protocole d'inventaire sur site

Un enregistreur automatique (modèle BATmode S+ de BioAcousticTechnology) est placé à l'intérieur de la nacelle de l'éolienne et le microphone est inséré dans sa paroi (illustration suivante).

Figure 10 : Dispositif installé dans la nacelle d'éolienne (copyright : B.A.T.)

L'enregistreur est équipé d'un microphone, placé sous la nacelle de l'éolienne au moyen d'un trou effectué dans la paroi de cette dernière. Ainsi, des relevés de la présence de chiroptères, dans un rayon allant jusqu'à 60 mètres autour du microphone (distance variable selon les espèces), pourront être réalisés chaque nuit pendant les périodes d'inventaires. L'ensemble du dispositif est piloté par un ordinateur, placé dans la nacelle, et pilotable à distance.

2.2.2.1.3 Méthode d'analyse des résultats

Les pistes sonores sont analysées par logiciel afin de déterminer les espèces présentes ainsi que leur comportement. Le dispositif étant positionné sur une nacelle d'éolienne, les données sur les conditions extérieures récoltées par cette dernière sont utilisées afin de mener une analyse croisée des paramètres.

Dans le but d'obtenir des données exploitables servant de base à l'interprétation d'un chiroptérologue, trois étapes sont nécessaires :

Analyse automatique des données brutes

À chaque détection de cris, le dispositif BATmode enregistre et une piste sonore est générée au format numérique. Cette dernière est sauvegardée sur un disque dur, permettant par la suite un transfert vers un ordinateur à distance.

Le grand nombre d'heures d'écoute engendre une grande quantité de pistes sonores, difficilement analysables manuellement. C'est pourquoi un logiciel de reconnaissance automatique des signaux ultrasons est utilisé. Le logiciel SonoChiro® traite les enregistrements en deux étapes :

- Le processus de détection consiste à localiser puis caractériser dans les fichiers enregistrés un maximum de signaux potentiellement émis par les chiroptères.
- Le processus de classification s'appuie sur la caractérisation des signaux détectés lors de la phase précédente. Cette classification s'opère sur chaque fichier où le logiciel a détecté des signaux de chiroptères. À l'issue de cette phase de classification, chaque contact bénéficie d'une identification à 4 niveaux : espèce, groupe, indice de présence de buzz (son émis pour la détection d'une proie) et indice

de présence de cris sociaux. Chaque niveau bénéficie d'un indice de confiance allant de 0 à 10 de façon à refléter le risque d'erreur d'identification. La présence d'une espèce est jugée fiable lorsque l'indice de confiance est supérieur à 5.

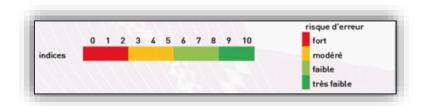


Figure 11 : Indices de confiance établis par Sonochiro® et risques d'erreurs associés

Vérification des résultats par un chiroptérologue

Le logiciel de reconnaissance automatique génère un tableau de résultats. Pour chaque séquence enregistrée, un certain nombre de paramètres est donné (groupe, espèce, indices de confiance, nombre de cris, date de l'enregistrement, etc.). La validité des déterminations issues de la reconnaissance automatique par logiciel est variable selon la qualité des enregistrements, les espèces contactées et le nombre de cris par séquence. Les déterminations au groupe sont généralement fiables tandis que les déterminations fines (à l'espèce) doivent être validées par un chiroptérologue. Dans ce cadre, un chiroptérologue procède à une vérification des espèces sur la base de la bibliographie, de sa connaissance du terrain et des inventaires déjà réalisés. La présence de chaque espèce est vérifiée par un chiroptérologue.

Dans la présente étude, à raison d'une trop forte proportion de parasites dans les enregistrements, l'analyse acoustique a été renforcée pour éliminer l'ensemble de ces derniers.

Les séquences de qualité médiocre (faiblesse des sons, bruits parasites) ou dont les signaux peuvent correspondre à plusieurs espèces sans possibilités de les différencier, sont laissées au genre afin de limiter les marges d'erreur. À défaut de la connaissance de l'espèce pour certains enregistrements, le nombre de contacts enregistrés constitue une donnée permettant de quantifier l'activité chiroptérologique.

Corrélation des données chiroptérologiques, météorologiques et astronomiques

La dernière étape de gestion et traitement des données consiste à mettre en conformité les données issues des enregistrements, les données fournies par l'éolienne et les données astronomiques de lever et coucher du soleil. À l'issue de cette opération, chaque enregistrement est défini par une série complète de paramètres permettant d'exploiter au mieux les données.

La mise en correspondance des données météorologiques et des enregistrements est réalisée par logiciel (macro Excel). Les enregistrements sont horodatés précisément tandis que les données météorologiques sont moyennées toutes les dix minutes. Concernant les vitesses de vent et la température, l'éolienne possède des instruments de mesure sur la nacelle.

2.2.2.2 Estimation de l'activité et de la diversité chiroptérologique

La quantification de l'activité et de la diversité chiroptérologique est basée sur des échelles d'activité mises en place par ENCIS Environnement. Afin de rester en adéquation avec les échelles d'activité déjà existantes sur d'autres protocoles acoustiques au niveau national, notamment Bas *et al.* 2020 et Hacquart 2015, la méthode retenue pour la mise en place de cette échelle est celle des quantiles. Ainsi, cette échelle a été définie sur la base de plus de 60 inventaires ultrasoniques automatiques en hauteur.

Quantiles	Échelles d'activité	Inventaires ultrasoniques automatiques en hauteur
Inférieur à 10 %	Très faible	<= 1
Entre 10 % et 25 %	Faible	1 à 3
Entre 25 % et 75 %	Modéré	3 à 25
Entre 75 % et 90 %	Fort	25 à 65
Supérieur à 90 %	Très fort	> 65

Tableau 1 : Valeurs seuils des échelles d'activité globale en fonction des différents protocoles

Quantiles	Échelles de diversité spécifique	Inventaires ultrasoniques automatiques en hauteur
Inférieur à 10 %	Faible	<= 6
Entre 10 % et 25 %	Modéré	6 à 12
Entre 25 % et 75 %	Fort	> 12

Tableau 2 : Valeurs seuils des échelles de diversité spécifique en fonction des différents protocoles

2.2.2.3 Localisation des protocoles effectués

Le tableau suivant présente l'habitat dans lequel l'enregistrement a été réalisé.

Numéro du point	Habitat	Type de milieu
BATmode S	Culture	Ouvert

Tableau 3 : Habitat et type de milieu inventorié

La cartographie suivante permet de rappeler la position de la BATmode S par rapport au parc éolien de Pièce de Vignes.

Carte 3 : Localisation du dispositif Batmode S

2.3.2.4 Calendrier des passages d'inventaire

2.2.2.3.1 Inventaire en nacelle

Concernant les écoutes sur nacelle d'éolienne, la période de présence du dispositif va du 15 mars 2022 au 15 novembre 2022, les inventaires reprendront en 2023. Les analyses des écoutes seront ainsi menées sur l'ensemble de la période d'activité des chiroptères.

Le volume des données brutes peut parfois être important lorsque l'éolienne génère des sons parasites, pour autant cela n'a pas été le cas ici.

Lors des périodes de maintenance ou du fait de problèmes techniques, il peut arriver que certaines nuits le dispositif ne fonctionne pas. Le monitoring permet d'identifier ces nuits de défaillance.

Le dispositif ne présente aucun dysfonctionnement lors des inventaires 2022.

Inventaires et méthodes	Nombres Dates o	Dates des	Horaires des		ons météorologio d'observation	lues	Personne ayant
employées	de sorties	campagnes	inventaires	Couverture du ciel	Température	Vent	réalisé les inventaires
Enregistrements automatiques en nacelle (Batmode S)	244 nuits	Du 15 mars au 15 novembre 2022	Une heure avant le coucher à une heure après le lever du soleil	-	-	-	Nicolas WAESSEM

Tableau 4 : Calendrier et paramètres du suivi en nacelle

2.3 Suivi de la mortalité sur l'avifaune et les chiroptères

2.3.1 Principes et objectif

L'exploitation d'un parc éolien engendre un risque de mortalité pour la faune volante présente de manière ponctuelle ou répétée à proximité des aérogénérateurs, par collision avec les pales en mouvement ou par barotraumatisme. Afin de s'assurer que les populations d'oiseaux et de chiroptères ne soient pas affectées de manière significative par le parc éolien et que l'impact sur ces taxons n'excède pas les prévisions de l'étude d'impact, un suivi de la mortalité est effectué sur site.

Ce suivi repose sur une méthodologie proposée par le « protocole de suivi environnemental des parcs éoliens terrestres » rédigé en novembre 2015 et révisé 2018, ainsi que sur les « suivis des impacts des parcs éoliens terrestres sur les populations de chiroptères », document actualisé en 2016 par la SFEPM.

L'évaluation de la mortalité de l'avifaune et des chiroptères engendrée par un parc éolien est réalisée par la recherche de cadavres au pied des aérogénérateurs. La technique consiste en une recherche visuelle au sol durant un trajet réalisé à pied, selon un parcours prédéfini et reproduit à plusieurs reprises durant une ou plusieurs périodes phénologiques au cours d'une année.

La mortalité brute observée est ensuite extrapolée, lorsque cela est possible, par l'utilisation de différents estimateurs. Ces estimateurs intègrent plusieurs paramètres correcteurs, tels que la surface prospectée relative, l'intervalle de temps moyen entre deux prospections, l'efficacité du chercheur ou encore la durée de persistance des cadavres sur le site (liée notamment à la prédation par d'éventuels charognards).

Si la mortalité brute observée sur le parc peut permettre la mise en évidence d'un impact d'ordre qualitatif (incidence notable sur un taxon, période à risque ou éolienne particulièrement mortifère), seules les mortalités estimées peuvent être utilisées pour quantifier l'impact de manière globale, et éventuellement, être comparées à d'autres parcs éoliens.

Compte tenu des nombreux facteurs aléatoires régissant les différences entre la mortalité constatée sur site et la réalité, il est par ailleurs nécessaire d'être vigilant aux limites des extrapolations effectuées. Toute conclusion ne devrait ainsi être tirée qu'en prenant en compte la tendance globale apportée par l'ensemble des estimateurs, et non les résultats d'une unique estimation.

Dans le cadre du suivi de la mortalité, la découverte d'un cadavre d'oiseau ou de chauve-souris par l'exploitant ou par l'un de ses sous-contractants fait systématiquement l'objet d'une fiche détaillée. Cela permet ainsi le recensement standardisé des caractéristiques de l'espèce et des conditions de mortalité constatée par une procédure définie par le Ministère en charge des Installations Classées pour la Protection de l'Environnement. Seuls les acteurs habilités à manipuler des cadavres ou des animaux blessés pourront remplir ces fiches de terrain dans le cadre du suivi de mortalité.

2.3.2 Protocole utilisé

2.3.2.1 Pression d'inventaires

La pression des inventaires et leur organisation au cours de l'année se définissent en fonction de la phénologie des espèces et tiennent compte des résultats de l'étude d'impact et des enjeux identifiés sur le site.

Le protocole national de suivi dans sa version de mars 2018 prévoit les modalités suivantes :

SEMAINE N°	1 A 19	20 A 30	31 A 43	44 A 52
	Si enjeux			Si enjeux
Le suivi de	avifaunistiques			avifaunistiques
mortalité doit	ou risque	Dans tou	ou risque	
être réalisé :	d'impact sur les			d'impact sur les
	chiroptères			chiroptères

Dans le cas du parc de Pièce de Vigne, l'étude d'impact prévoyait un suivi de la mortalité à réaliser sur les cinq années après la mise en fonctionnement du parc. Pour cette 12^e année d'exploitation, la pression d'inventaire a été définie pour répondre aux modalités prévues dans le protocole 2018.

Au total sur l'année 2022, 21 prospections ont été réalisées dans le cadre du suivi de la mortalité, à raison d'une prospection par semaine (environ), entre les semaine 20 et 43. Le calendrier complet des sorties est présenté en annexe.

2.3.2.2 Nombre d'éoliennes prospectées

Compte tenu d'une potentielle hétérogénéité de la mortalité au sein d'un parc éolien, le protocole national préconise le suivi de :

- toutes les éoliennes pour les parcs de 8 éoliennes et moins ;
- d'au moins 8 + (n 8)/2 pour les parcs de plus de 8 éoliennes contenant n éoliennes.

Ainsi, au sein du parc de Pièces de Vignes, chacune des cinq éoliennes a été prospectée lors de ce suivi.

2.3.2.3 Surface et méthode d'échantillonnage

La surface échantillon à prospecter correspond à un carré de 100 m de côté (ou deux fois la longueur des pales pour les éoliennes présentant des pales de longueur supérieure à 50 m) ou un cercle de rayon égal à la longueur des pales avec un minimum de 50 m.

Dans le cadre de ce suivi, pour chaque éolienne, un carré de 100 mètres de côté a ainsi été défini comme surface échantillon. La surface théorique d'échantillonnage couvre ainsi une surface de 10 000 m² par éolienne suivie.

Par la suite, le chercheur détermine un parcours à suivre et l'utilise invariablement lors de chaque prospection. L'espacement entre les transects ne doit pas dépasser 10 mètres, correspondant à une distance maximale de perception des cadavres par un observateur.

Le schéma suivant illustre la méthode théorique mise en place dans le cadre d'un suivi de la mortalité au pied d'une éolienne.

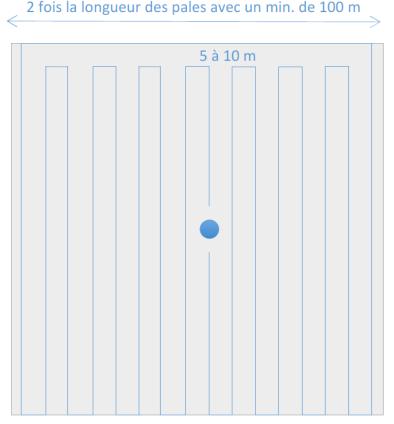


Figure 12 : Schéma du parcours théorique au pied d'une éolienne

Au cours de chaque prospection du suivi mortalité une fiche de données est complétée par le chercheur (cf. Annexes). De plus, à chaque découverte de cadavre, celui-ci est localisé par GPS, photographié et déterminé, puis, fait l'objet d'une fiche détaillée définie par le Ministère en charge des Installations Classées pour la Protection de l'Environnement (cf. Annexes). Cette fiche permet la saisie standardisée de l'espèce et des conditions de mortalité constatées.

2.3.1 Détermination du statut biologique

Le statut biologique des individus est déterminé en fonction de plusieurs paramètres : date de découverte, critères morphologiques, phénologie de l'espèce, présence avérée en nidification, etc. En effet, il existe par exemple des périodes pendant lesquelles certaines espèces sont en phase migration

alors que d'autres sont en phase de reproduction. Ce phénomène existe également entre des individus au sein de la même espèce. Si la caractérisation précise de la phase biologique n'est pas possible, c'est la phase présentant l'enjeu le plus important qui est retenue.

2.3.2 Méthodes d'estimation de la mortalité

L'estimation de la mortalité peut être réalisée par l'intermédiaire de plusieurs formules mathématiques considérées comme valides, issues de différents protocoles (Winkelman, 1989 ; Erikson, 2000 ; Jones, 2009 ; Huso, 2010 ; Korner, 2011 ; Etterson, 2013).

Ces formules prennent en compte un certain nombre de paramètres. Ceux-ci permettent d'intégrer certains biais liés aux divers facteurs aléatoires, induisant les différences entre la mortalité constatée sur site et la réalité.

Ainsi, d'une manière générale, outre le nombre de cadavres trouvés (mortalité brute), plusieurs variables sont à évaluer afin d'être utilisées comme paramètres correcteurs :

- l'efficacité du chercheur (efficacité du chercheur à détecter les cadavres au sol) ;
- la persistance des cadavres (durée moyenne de présence ou taux de persistance des cadavres avant prélèvement, notamment par des animaux charognards) ;
 - l'intervalle des prospections sur site ;
- les surfaces non-prospectables (surfaces qui ne peuvent être prospectées en raison des contraintes liées au couvert végétal, au dénivelé, à la maîtrise foncière, *etc.*).

Deux tests ont été réalisés pour mesurer l'efficacité de l'observateur et quantifier la persistance des cadavres sur le site.

2.3.2.1 Durée moyenne de l'intervalle (I)

La durée moyenne de l'intervalle (I) entre deux prospections doit être déterminée afin d'être prise en compte dans les calculs d'estimation de la mortalité. Elle est calculée comme suit :

$$I = \frac{\sum_{i}^{S} I_{i}}{r}$$

Où : $-I_i$: durée de l'intervalle i

- *r* : nombre d'intervalles (entre chaque recherche)

2.3.2.2 Test d'efficacité

Ce test a pour but de déterminer l'efficacité du chercheur, à savoir le nombre de cadavres trouvés par rapport à un nombre de cadavres déposés sur la zone de prospection.

Ainsi, afin de simuler des cadavres d'oiseaux et de chiroptères, une tierce personne (testeur) dépose entre trois et cinq cadavres (au moins) de poussins et/ou de souris, de tailles variées de manière aléatoire, sous chacune des éoliennes du parc. Les cadavres sont tout de même placés de manière à couvrir différents types de végétation présents, hors zones non-prospectées, et sont localisés par GPS. Le chercheur effectue ensuite son parcours habituel. Le nombre de cadavres retrouvés est alors comptabilisé.

Le facteur de correction lié à l'efficacité des chercheurs (d) correspond à la proportion de cadavres trouvés par rapport au nombre de cadavres déposés, soit :

$$d = \frac{d_t}{d_T}$$

Où : $-d_t$: nombre de cadavres trouvés par le chercheur

- d_T : nombre de cadavres déposés initialement

Les paramètres des deux tests effectués sur l'année de suivi sont synthétisés dans le tableau suivant.

Test	Date	Nombre cadavres déposés			
Test	Date	Petit (souris)	Gros (poussins)	Total	
Test 1	7 juin 2022	12	13	25	
Test 2	16 août 2022	35	0	35	
Total		47	13	60	

Tableau 5 : Paramètres des tests de d'efficacité effectués sur l'année de suivi

2.3.2.3 Test de persistance

Ce test a pour but d'évaluer la durée de persistance des cadavres, afin d'en tenir compte dans l'estimation de la mortalité. Cette durée de persistance est notamment influencée par les prélèvements des charognards.

À la suite du test d'efficacité les cadavres leurres sont laissés sur place. Plusieurs prospections ont lieu les jours suivant, à J+1, J+3, J+6, J+9 et J+13 u jusqu'à la disparition des cadavres. Cela permet d'estimer la durée de persistance des cadavres dans le milieu. Dans le cas particulier d'une persistance trop faible où tous les cadavres avaient disparu à J+1 lors du premier test, un passage à J+2 a également été réalisé pour évaluer la persistance des cadavres lors du deuxième test.

Selon la méthode d'estimation, ce prélèvement peut être mesuré de différentes manières :

• La durée moyenne de persistance des cadavres (t), utilisée dans les méthodes d'Erickson, de Jones et d'Huso, qui est calculée comme suit :

$$t = \frac{\sum_{i=1}^{C_T} t_i}{C_T}$$

Où : $-t_i$: durée de persistance du cadavre i

- C_T : nombre de cadavres utilisés pour le test

• Les taux de persistance des cadavres (d) de Jones et d'Huso, qui sont détaillés dans la partie traitant des méthodes d'estimation de la mortalité (Protocoles « Jones » et « Huso »).

2.3.2.4 Correction surfacique

La surface théorique de recherche sous l'éolienne n'est pas nécessairement prospectable dans son intégralité. En effet, la végétation présente peut rendre impossible le passage à pied (buissons, etc.) ou limiter la capacité d'observation du chercheur (cultures, prairies hautes, etc.). D'autres facteurs peuvent aussi être à l'origine d'une limitation de la prospection : autorisation d'accès sur les propriétés foncières, travaux à proximité de l'éolienne, etc.

Afin de pallier ce biais, le chercheur retranscrit sous SIG les surfaces prospectées lors de chaque visite. Un facteur de correction surfacique peut ensuite être appliqué lors des calculs d'estimation.

Le facteur de correction, calculé pour chaque prospection, est défini comme suit :

$$A = \frac{A_{Th}}{A_n}$$

Où : $-A_{Th}$: surface théorique

- A_p : surface prospectée

2.3.2.5 Estimation de la mortalité

Une fois la campagne d'inventaires réalisée, les résultats sont analysés par l'intermédiaire des différentes méthodes d'estimation de la mortalité.

Le protocole de suivi environnemental des parcs éoliens terrestres (révision 2018) préconise la méthode suivante :

- Utiliser au moins 3 formules de calcul des estimateurs standardisés à l'échelle internationale pour faciliter les comparaisons :
 - o la formule d'Huso (2010);
 - o deux formules aux choix parmi: Erickson, 2000; Jones, 2009; Korner-Nievergelt, 2015; Limpens *et al.*, 2013; Bastos *et al.*, 2013, Dalthorp *et al.*, 2017, etc.
- Préciser l'incertitude de l'estimation de la mortalité.

Les mortalités estimées sont calculées via le logiciel EolApp développé par le Centre d'Écologie Fonctionnelle et Évolutive de Montpellier (UMR 5175, www.cefe.cnrs.fr). Ce logiciel permet de calculer la mortalité estimée selon les formules d'Huso, d'Erickson, de Winkelman et de Jones, assorties de leurs intervalles de confiance à 90 % et 95 %. En accord avec les préconisations du protocole 2018, les résultats de la formule d'Huso sont utilisés, ainsi que ceux des formules d'Erickson et de Jones. Les résultats issus de la formule de Winkelman ne sont pas retenus, cette formule étant jugée obsolète, notamment par la SFEPM qui préconise l'utilisation d'au moins trois des estimateurs suivants: Huso, Jones, Erickson, Korner-Nievergelt, Limpens, Bastos.

2.3.2.5.1 Protocole « Frickson »

En 2000, Erikson intègre au calcul deux nouvelles variables : la durée moyenne de persistance des cadavres, ainsi que la durée moyenne de l'intervalle entre les prospections. Par ailleurs, cette formule est utilisable même lorsque le taux de persistance des cadavres est nul. Dans ce cas, les résultats concernant la mortalité seraient, toutefois, sous-estimés.

$$N = \frac{(I * C)}{(t * d)} * A$$

Où: - N: mortalité estimée

- *I* : durée moyenne (en jours) de l'intervalle entre deux prospections

- C: nombre de cadavres trouvés durant le suivi

- t : durée moyenne (en jours) de persistance des cadavres

- d : efficacité du chercheur

- ${\it A}\,$: coefficient de correction surfacique

2.3.2.5.2 Protocoles « Jones » et « Huso »

Ces deux protocoles sont très semblables et intègrent deux nouvelles variables :

- Le taux de persistance selon Jones (dont le calcul diffère d'un protocole à l'autre),
- Le coefficient correcteur de l'intervalle.

$$N = \left(\frac{C}{d * p * \hat{e}}\right) * A$$

Où: - N: mortalité estimée

- C: nombre de cadavres trouvés durant le suivi

- d : efficacité du chercheur

- p : taux de persistance (voir calcul ci-dessous « Jones » ou « Huso »)

- ê : coefficient correcteur de l'intervalle (voir ci-dessous)

- A : coefficient de correction surfacique

Le coefficient correcteur de l'intervalle est défini comme suit :

$$\hat{e} = \frac{Min(I:\hat{I})}{I}$$

Où : - *I* : durée moyenne (en jours) de l'intervalle entre deux prospections

- I: intervalle effectif, soit: - log (0,01) * t

(- t : durée moyenne (en jours) de persistance des cadavres)

« Jones »

En 2009, Jones *et al.* proposent une méthode intégrant un taux de persistance et un coefficient correcteur de l'intervalle. Cette méthode repose sur les postulats suivants :

- Le taux de mortalité est constant sur l'intervalle défini,
- La durée de persistance d'un cadavre suit une variable exponentielle négative (impliquant que la probabilité de disparition moyenne sur l'intervalle corresponde à la probabilité de disparition d'un cadavre à la moitié de l'intervalle).

Ainsi, Jones définit le taux de persistance comme suit :

$$p = e^{\left(\frac{-0.5 * I}{t}\right)}$$

Où: - I : durée moyenne (en jours) de l'intervalle entre deux prospections

- t : durée moyenne (en jours) de persistance des cadavres

Ainsi: $N = \frac{C}{d*e^{\left(\frac{-0.5*I}{t}\right)}*\hat{e}} * A$

« Huso »

En 2010, Huso propose une nouvelle évaluation du taux de persistance. En se basant sur la formule de Jones, elle considère que la probabilité de disparition au point moyen de l'intervalle (second postulat de Jones) n'est pas égale à la probabilité moyenne de persistance d'un cadavre.

Ainsi, Huso définit le taux de persistance comme suit :

$$p = \frac{\left(t * \left(1 - e^{\left(-\frac{I}{t}\right)}\right)\right)}{I}$$

Où : - I : durée moyenne (en jours) de l'intervalle entre deux prospections

- t : durée moyenne (en jours) de persistance des cadavres

Ainsi:
$$N = \frac{C}{d*\left(\frac{t*\left(1-e^{\frac{-1}{t}}\right)}{I}\right)*\hat{e}} * A$$

2.3.2.6 Postulat de chaque méthode d'estimation

Méthodes	Aire d'étude	Intervalle entre deux recherches	Persistance	Efficacité
Erickson (2000)	Pris en compte	Pas d'exigence	Pris en compte (Durée de persistance) Suppose que la prédation suit une loi exponentielle	Pris en compte (Test d'efficacité) Suppose qu'un cadavre non trouvé lors d'une recherche peut l'être aux suivantes
Jones (2009)	Pris en compte	Pas d'exigence	Pris en compte (Durée de persistance) Suppose que la prédation est constante dans l'intervalle entre deux recherches	Pris en compte (Test d'efficacité) Suppose qu'un cadavre non trouvé lors d'une recherche peut l'être aux suivantes
Huso (2010)	Pris en compte	Intervalle basé sur « i » (Le temps au-delà duquel la probabilité de persistance est inférieure à 1%)	Pris en compte (Durée de persistance) Suppose que la prédation suit une loi exponentielle	Pris en compte (Test d'efficacité) Suppose qu'un cadavre non trouvé lors d'une recherche ne peut l'être aux suivantes

Tableau 6 : Postulats de chaque méthode d'estimation

Il est à noter que la formule d'Erickson (2000) tend à sous-estimer la mortalité réelle, notamment lorsque la durée de persistance des cadavres est importante.

2.4 Limites des méthodes utilisées et difficultés rencontrées

2.4.1 Limites des méthodes employées

Pour réaliser le suivi des milieux naturels, des relevés ont été réalisés. Ces nombreux diagnostics ont permis de réaliser un inventaire le plus complet possible. Toutefois, rappelons qu'un inventaire naturaliste ne peut être prétendu totalement exhaustif. Néanmoins, la précision apportée au diagnostic s'adapte au mieux aux exigences d'un suivi environnemental.

2.4.1.1 Limites des méthodes employées pour le suivi des chiroptères

Les inventaires réalisés in situ (acoustiques, prospections des gîtes) sont ponctuels dans l'espace et dans le temps. La quantification et la qualification du cortège et de l'activité chiroptérologique de la zone restent suffisantes au regard des enjeux et objectifs rattachés à cette étude.

Le travail de détection comporte une limite importante dans la détermination exacte des signaux enregistrés. En effet, malgré l'utilisation de matériels perfectionnés, le risque d'erreur existe concernant l'identification des espèces des genres *Pipistrellus* et *Myotis*. Dans ce cas, seul le genre est déterminé.

Les Murins émettent des fréquences modulées abruptes de très faible portée, dont l'enregistrement est presque impossible à plus de 4 ou 5 mètres de l'animal. Malgré l'utilisation de matériels perfectionnés, la distance de détection de ces espèces est limitée par la faible portée de leurs signaux.

Les émissions sonores des individus appartenant au genre *Rhinolophus* sont de faible intensité et sont indétectables à plus de 10 m de distance. Dans ce cas, seul le genre est déterminé.

Enfin, l'utilisation d'un matériel électronique peut induire des risques de problèmes techniques (pannes) temporaires.

2.4.1.2 Limites des méthodes employées pour le suivi de la mortalité

Les relevés effectués lors des prospections permettent d'obtenir des résultats bruts. Plusieurs variables sont ainsi prises en compte lors de l'estimation afin de limiter les biais :

- La capacité de détection est variable en fonction du chercheur. Ce biais est corrigé par l'utilisation d'un ou plusieurs tests d'efficacité et la prise en compte du taux d'efficacité dans les calculs d'estimation. Toutefois, la variabilité de l'efficacité peut être liée à de multiples facteurs (luminosité extérieure, fatigue du chercheur, type de végétation sur la surface prospectée, *etc.*). Il est donc complexe de corriger ce biais avec précision.
- La durée de persistance des cadavres est estimée par la réalisation d'un ou plusieurs tests de persistance et la prise en compte du taux de persistance dans les calculs d'estimation. Toutefois, ce taux de persistance dépend de nombreux facteurs aléatoires et peut ainsi être variable temporellement et spatialement. De même, il est complexe de corriger ce biais avec précision.
- Les surfaces non-prospectées créent un biais d'échantillonnage qui est corrigé par le coefficient de correction surfacique, pris en compte dans les calculs d'estimation. Toutefois, cette correction repose sur l'hypothèse que les cadavres se répartissent de façon homogène sous l'éolienne, au sein de la surface prospectée.

D'autres facteurs peuvent éventuellement limiter la robustesse des résultats :

- La surface de prospection est un carré comprenant la totalité de la zone de survol des pales (coté au moins égal à deux fois la longueur d'une pale). Il est possible que des individus soient éjectés en dehors de cette zone ou soient blessés et meurent à une distance bien plus éloignée. Il s'agit du « cripping loss », un biais peu étudié et non pris en compte dans les différentes méthodes d'estimation.
- L'efficacité du chercheur peut être limitée par les conditions météorologiques. Toutefois, ce biais est réduit car les sorties sont réalisées autant que possible lorsque la météo est favorable.

2.4.2 Difficultés rencontrées

2.4.2.1 Suivi des chiroptères

Les difficultés qui peuvent être rencontrées pour le suivi des chiroptères sont principalement d'ordre technique.

Concernant le suivi en nacelle via les BATmodes, des problèmes techniques peuvent occasionnellement survenir. Ils peuvent amener une perte d'information par arrêt temporaire des enregistrements de chauves-souris, cela n'a pas été le cas pour cet inventaire.

Un autre problème possible est l'enregistrement par les dispositifs BATmode S de sons qui ne proviennent pas de chiroptères. Ces sons « parasites » peuvent être dû à des bruits de l'environnement nocturnes et notamment des éoliennes. Une grande quantité de sons parasites ont été enregistrés au cours de cet inventaire.

Ces limites protocolaires ne modifient pas les conclusions globales des analyses sur le comportement, la diversité et la quantité des chiroptères présents en vol à hauteur de nacelle sur le site de Pièces de Vignes.

2.4.2.2 Suivi de la mortalité

Aucune difficulté particulière n'a été rencontrée.

3 Résultats et analyse du suivi d'activité des chiroptères

3.1 Bilan des connaissances de l'étude d'impact

D'après les résultats présentés dans l'étude d'impact (Tencia, 2006) de la ferme éolienne de Pièce de Vignes, une soirée d'écoute et de reconnaissance visuelle a été réalisée.

Le protocole utilisé n'a pas permis d'identifier des chiroptères sur le site. Deux espèces (Pipistrelle commune et Sérotine commune) et un individu n'ayant pas pu être défini jusqu'à l'espèce (Oreillard sp.) ont été détectés à quelques centaines de mètres du site. Aucune écoute en altitude n'a été effectuée lors de l'étude d'impact. De ce fait, les espèces de haut vol sensibles à l'éolien sont potentiellement sousestimées.

Le suivi comportement de la présente étude cible précisément l'activité des chiroptères au niveau des rotors. Cela devrait permettre d'étoffer les résultats de l'étude d'impact, en particulier sur le groupe des espèces de haut vol, comme les noctules.

L'étude d'impact réalisée par Tencia en 2006 conclue sur un risque de collision très faible sur la zone, car aucune espèce n'y a été détectée. Aucun enjeu apparent ne concerne les chiroptères, pour lesquels la zone est jugée inhospitalière.

D'après l'étude d'impact de 2006, les impacts en phase d'exploitation du parc éolien sur les chiroptères sont considérés très faibles. Le présent suivi ICPE doit permettre d'affiner ces résultats, une corrélation entre les écoutes en nacelle et le suivi de la mortalité au sol est notamment réalisée.

3.2 Suivi de l'activité des chiroptères en 2022

3.2.1 Suivi ultrasonique automatique permanent en nacelle

Les résultats présentés dans cette partie correspondent aux inventaires réalisés à l'aide d'un détecteur automatique d'ultrasons de type Batmode S, installé au niveau de la nacelle de l'éolienne E3. Ces inventaires sont réalisés en continu durant les périodes les plus importantes du cycle biologique des chiroptères, du 15 mars au 15 novembre 2022.

Le dispositif est donc resté installé durant 244 nuits et **l'analyse porte sur l'ensemble de ces nuits**, elles se situent en effet dans le cycle biologique actif des chiroptères (mars à novembre).

3.2.1.1 Diversité et activité spécifique enregistrée

3.2.1.1.1 Résultats obtenus sur l'ensemble du cycle

Le tableau suivant présente les résultats issus des analyses du logiciel Sonochiro®. Ces données ont été vérifiées par un chiroptérologue afin d'obtenir une liste d'espèces dont la présence est certifiée. La plupart des contacts ont été vérifiés en raison d'un grand nombre de séquences comportant des parasites liés à l'éolienne. Par cette méthode, les résultats présentés dans le tableau suivant constituent une base de données jugée fiable.

Genre	Espèces	Transits printaniers et gestation	Mise-bas et élevage des jeunes	Transits automnaux et swarming	Total estimé		
Eptesicus	Sérotine commune	-	6	2	8		
Nyctalus	Noctule commune	7	1 991	949	2 947		
rvyctaras	Noctule de Leisler	6	489	586	1 081		
	Pipistrelle commune	11	244	35	290		
Pipistrellus	Pipistrelle de Kuhl	5	153	63	221		
Γιριστι επασ	Pipistrelle de Nathusius	3	6	40	49		
Plecotus	Oreillard gris	-	-	11	11		
	Recensements n'ayant pas pu être déterminés à l'espèce						
Pipistrelle	de Kuhl / Nathusius	-	3	3	6		
Sérot	ine / Noctule sp.	-	7	6	13		
Total	7 espèces	32	2 899	1 695	4 626		

Tableau 7 : Répartition du nombre de contacts par espèce et par éolienne

La diversité spécifique inventoriée par le protocole d'écoute permanente sur nacelle d'éolienne est qualifiée de modérée pour un milieu en hauteur, avec la présence de sept espèces identifiées de manière certaine.

En hauteur, on constate une cohérence avec la bibliographie disponible, au travers d'une plus forte proportion des espèces dites de haut-vol ou de lisière généralistes (Noctule de Leisler, Noctule commune,

Sérotine commune et pipistrelles) qui totalisent presque toute l'activité, les espèces plus forestières n'étant que peu présentes, seul l'Oreillard gris est représenté.

Ainsi, la Noctule commune regroupe la majorité des contacts avec 64 % du total. La Noctule de Leisler, la Pipistrelle commune et la Pipistrelle de Kuhl suivent avec respectivement 24 %, 6 % et 5 % de l'activité en hauteur. La Pipistrelle de Nathusius est bien moins représentée avec 1 % des contacts. La Sérotine commune et l'Oreillard gris sont présents de manière anecdotique sur le site avec moins de 11 contacts sur la période de suivi pour chacune de ces espèces.

On notera donc la forte présence des noctules et particulièrement de la Noctule commune, en comparaison des autres espèces. Les noctules sont des espèces sensibles à l'éolien spécialisées dans le vol en hauteur, elles sont également migratrices.

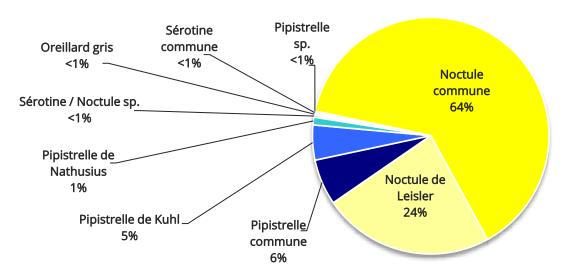


Figure 13 : Répartition des contacts par espèces ou groupes d'espèces sur l'ensemble de la période d'étude

3.2.1.1.2 Résultats obtenus en fonction du cycle biologique des chiroptères

Le tableau suivant présente le nombre de contacts enregistrés pour chaque phase biologique. Ils ont également été ramenés au nombre de nuits présentant un contact chiroptérologique.

	Transits printaniers et gestation	Mise-bas et élevage des jeunes	Transits automnaux et swarming	Cycle complet
Nombre de contacts	32	2 899	1 695	4 626
Nombre de nuits d'enregistrements	78	75	91	244
Pourcentage du nombre de contacts par nuit	<1 %	67 %	33 %	100 %
Moyenne du nombre de contacts par nuit	<1	39	19	19

Tableau 8 : Répartition du nombre de contacts au sol et en hauteur en fonction des phases biologiques

On constate que la période de mise-bas et d'élevage des jeunes est la phase avec le plus d'activité, loin devant les autres. Elle concentre 67 % des contacts totaux. La période de transits automnaux et swarming arrive ensuite avec 33 % des contacts suivi de la phase de transits printaniers et gestation (inférieur à 1 % des contacts).

Sur le cycle complet des chiroptères, l'activité globale est modérée pour ce type de protocole. Nonobstant, une forte variation entre les saisons est observable : l'activité est forte sur la période estivale, modérée en automne et très faible au printemps.

3.2.1.1.3 Résultats obtenus en fonction du mois d'inventaire

En comparant les mois entre eux, on note une forte prédominance du groupe des noctules et notamment de la Noctule commune à l'exception des mois de mai et juin où les pipistrelles, notamment la Pipistrelle commune, sont plus présentes.

Les mois de juillet et août concentrent la moitié des contacts enregistrés sur le site, soit près de 3 300 contacts sur ces deux mois. C'est durant cette période que l'activité est la plus intense avec une large proportion de Noctule commune (75 % des contacts sur les mois de juillet et août). Dans un second temps, les mois de septembre et octobre apparaissent comme plutôt bien fréquentés par les chiroptères avec 20 % des contacts enregistrés sur un cycle complet. Cette période affiche également une proportion notable de noctules, où la Noctule de Leisler parvenant même à rivaliser avec la Noctule commune. Ces deux mois sont aussi une période remarquable pour le déplacement des chiroptères entre les gîtes estivaux et les gîtes d'hibernation ainsi que les regroupements de swarming.

Le mois de juin, début de la période de mise-bas, compte aussi une activité importante avec 10 % des contacts enregistrés sur le cycle complet. Il s'agit d'une période importante pour les chiroptères car c'est le début de la période de mise-bas et d'élevage des jeunes.

Enfin, les deux autres mois où une activité de chauves-souris a été enregistrée sont les mois d'avril et de mai. Ces deux mois affichent des contacts anecdotiques avec moins d'un pourcent des contacts.

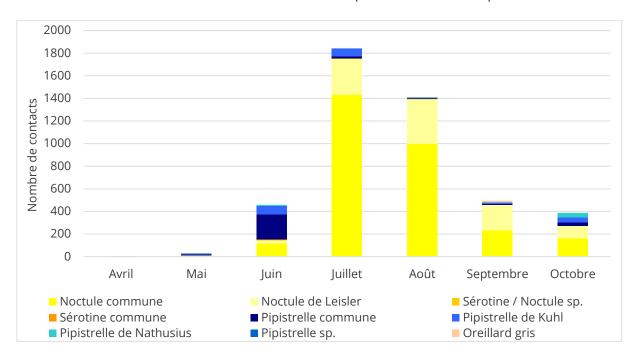


Figure 14 : Répartition du nombre de contacts par mois complet d'enregistrement

	Mars	Avril	Mai	Juin	Juil.	Aout	Sept.	Oct.	Nov.
Nombre de contacts	0	1	31	460	1 845	1 408	492	389	0
Nombre de nuits d'enregistrements	16	30	31	30	31	31	30	31	15
Pourcentage du nombre de contacts par nuit	0 %	<1 %	1 %	10 %	40 %	30 %	11 %	8 %	0 %
Moyenne du nombre de contacts par nuit	0	<1	1	15	60	45	16	13	0

Tableau 9 : Répartition du nombre de contacts en fonction des mois d'inventaires

3.2.1.1.4 Résultats obtenus en fonction de la nuit d'inventaire

Le graphique suivant illustre l'activité chiroptérologique par nuit d'inventaire. Ainsi, l'activité interjournalière des chauves-souris est très irrégulière. Le nombre de contacts enregistré par nuit varie de 0 à 454 contacts. Cette variabilité journalière reste particulièrement complexe à anticiper, dépendant de multiples facteurs à l'exemple des conditions météorologiques ou de la présence de ressources alimentaires, etc. Il est dans l'état des connaissances actuelles très difficile de comprendre ces variations mais une hypothèse de migration peut être formulée sur ce site. En effet, des pics d'activités très forts et concentrés sur certaines nuits peuvent survenir brusquement, comme au mois de juillet et août.

Pour rappel, le dispositif fut opérationnel depuis le 15 mars 2022, et l'arrêt des écoutes dans le cadre des analyses suivantes a été fixé au 15 novembre 2022. Le premier contact de chauves-souris a été recensé le 17 avril 2022.

Plusieurs nuits ont donc enregistré un nombre de contact conséquent. En effet, alors que la plupart des nuits ne dépassent pas la centaine de contacts enregistrés, il y a eu 454 contacts le 24 juillet, 407 contacts le 23 juillet et 388 contacts le 29 juillet. D'autres nuits de juillet et août rencontrent un nombre de contacts plus fort que la moyenne, c'est notamment le cas du 2 août, du 25 juillet et du 23 août qui dépassent les 150 contacts.

Tous ces contacts incluent surtout la Noctule commune. La période de fin juillet à mi-août correspond au commencement des départs en migration pour cette espèce. Le nombre de contact important sur le site pour l'espèce plaide donc en faveur de phénomènes migratoires à partir de sites de reproduction, des individus de cette espèce passant potentiellement au-dessus du site afin d'aller hiberner plus au sud. La présence d'une colonie dans le secteur est probable.

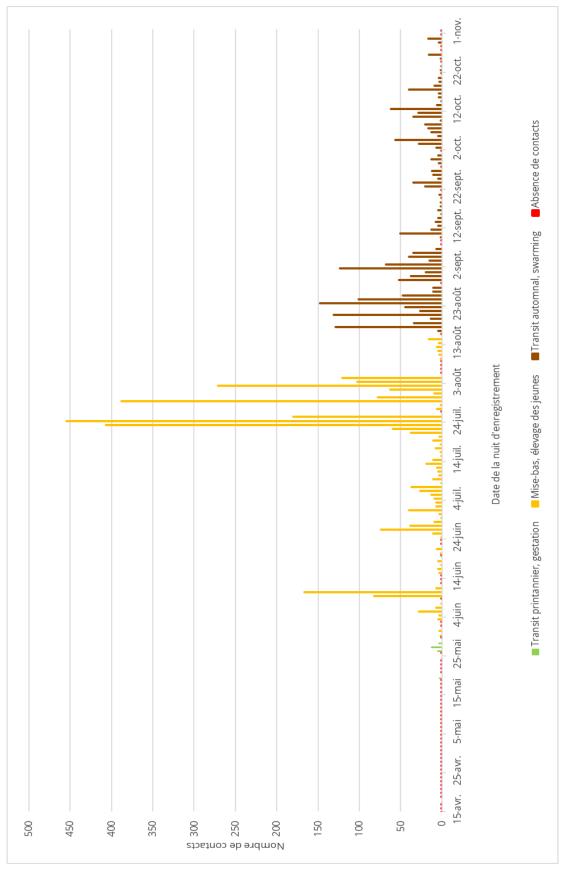


Figure 14 : Répartition du nombre de contacts par jours durant l'ensemble de la période d'inventaire

3.2.1.2 Activité chiroptérologique en fonction des facteurs astronomiques et météorologiques

3.2.1.2.1 Activité chiroptérologique en fonction du cycle circadien

Résultats obtenus sur l'ensemble de la période d'étude

La répartition du nombre de contacts en fonction des heures de la nuit et de la période de l'année est représentée dans le graphique suivant. Ainsi, ce dernier est présenté sous la forme d'une carte de chaleur affichant la densité de contacts chiroptérologiques. Les aplats de couleurs représentent l'intensité de l'activité chiroptérologique, répartie entre les heures de la nuit (heure astronomique et non civile) en ordonnée, et les jours de l'année en abscisse. La couleur blanche correspond à l'absence de contacts.

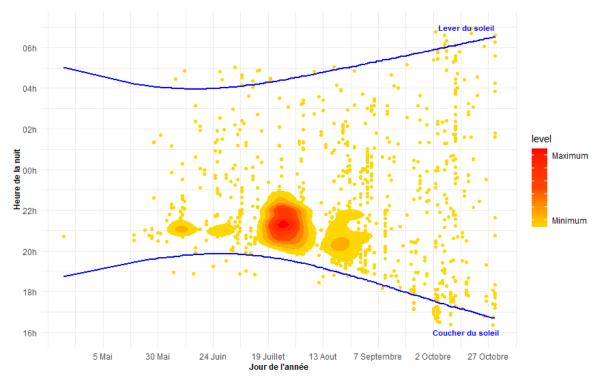


Figure 15 : Répartition de l'activité chiroptérologique en fonction du cycle circadien

Selon les données bibliographiques, il existe une baisse progressive du niveau d'activité au cours de la nuit. Cette baisse peut être accentuée par des facteurs limitants, comme le début et la fin de la saison, ou encore des températures froides.

Sur la période analysée, cette tendance est effectivement observée durant les périodes où le nombre de contacts est assez important, de début juin à fin août. L'activité maximale est visible de mijuillet à début août, d'une demi-heure à trois heures après le coucher du soleil, puis l'activité diminue largement jusqu'à n'avoir que quelques contacts sur le reste de la nuit.

Aussi, plusieurs études suggèrent la présence d'un regain d'activité à l'aube pour certaines espèces de chiroptères. C'est le cas par exemple de la Noctule commune, dont une activité de retour au gîte relativement importante à l'aube a pu être mise en évidence dans les forêts de Slovaquie (Kanuch, 2007). Deux pics d'activité (crépuscule et aube) avaient déjà été mis en évidence pour cette même espèce dans la forêt de Białowieża en Pologne (Rachwald A., 1992), trois selon Arthur et Lemaire (2015). Les pipistrelles

montrent également un pic d'activité au crépuscule et au lever du soleil. Ces deux périodes correspondent en effet aux pics d'activité des insectes nocturnes, et donc des chiroptères pour leur activité de chasse (Swift, 1980).

Sur la période où le nombre de contacts est assez important, de début juin à fin août, l'activité est à contrario concentrée uniquement en début de nuit.

Sur toute la période étudiée, des contacts isolés sont enregistrés aussi bien en début qu'en fin de nuit, cela correspond aux points jaunes épars.

On observe aussi que de mi-avril jusqu'à mi-mai, un seul contact de chauve-souris a été détecté.

3.2.1.2.2 Activité chiroptérologique en fonction de la température

La température semble jouer un rôle sur l'activité chiroptérologique. Si plusieurs auteurs concluent à une corrélation positive entre l'augmentation de la température et l'activité (Redell *et al.*, 2006 ; Arnett *et al.*, 2006, 2007 ; Baerwald and Barclay 2011, etc.), d'autres ne considèrent pas ce paramètre en tant que facteur influant indépendamment sur l'activité chiroptérologique (Horn *et al.*, 2008 ; Kerns *et al.*, 2005). Arnett *et al.*, 2006 ont en outre observé qu'au-dessus de 44 m d'altitude, l'activité n'était en rien affectée par la température. Les opinions sur les autres paramètres météorologiques, sont d'autant plus mitigées. La pression atmosphérique (Cryan and Brown 2007 ; Cryan *et al.*, 2014) et l'hygrométrie (Behr *et al.*, 2011) pourraient également influer sur l'activité chiroptérologique. Il semble toutefois vraisemblable que ces paramètres influent de manière concomitante sur l'activité des chiroptères (ce qui serait aussi le cas de la température) comme le montrent Behr *et al.*, (2011), ou sur l'abondance d'insectes (Corten and Veldkamp 2001). Enfin, l'expérience montre qu'en fonction des saisons, l'importance de ce facteur sur l'activité chiroptérologique oscille fortement.

Résultats obtenus sur l'ensemble de la période d'étude

Le graphique suivant présente parallèlement les occurrences de températures nocturnes enregistrées par la nacelle de l'éolienne et le nombre de contacts de chiroptères en fonction de ces températures.

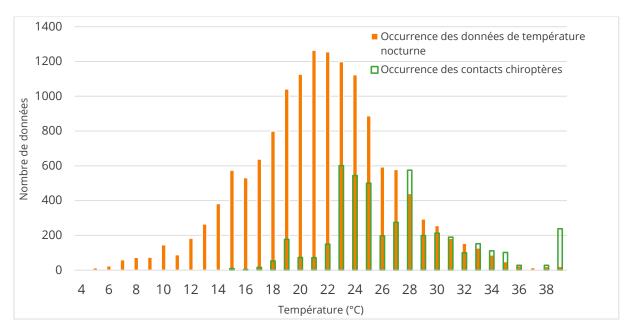


Figure 16 : Activité des chiroptères en fonction de la température

Les inventaires réalisés sur le site montrent ainsi que les chiroptères semblent concentrer leur activité entre 18 et 35 °C, en décalage avec les températures nocturnes « disponibles » qui se concentrent entre 12 et 31 °C. L'activité semble démarrer réellement à partir de 19 °C.

Résultats obtenus par analyse mensuelle

L'analyse mensuelle de l'activité des chiroptères expose les mêmes tendances que celles observées sur l'ensemble de la période étudiée, à savoir qu'un maximum d'activité est mesuré à partir de 19 °C et jusqu'à plus de 34 °C de température. On voit clairement sur ce graphique la forte activité en juillet et août avec des plages de températures variées utilisées par les chiroptères.

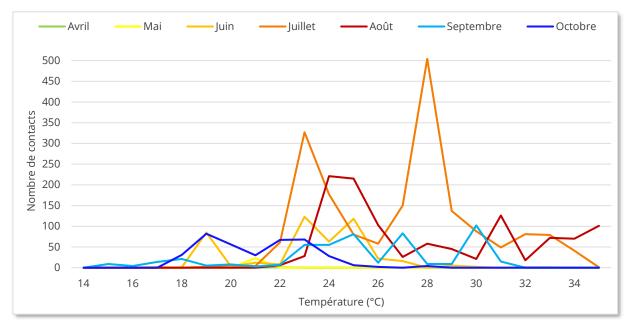


Figure 16 : Activité mensuelle des chiroptères en fonction de la température

3.2.1.2.3 Activité chiroptérologique en fonction de la vitesse du vent

Résultats obtenus sur l'ensemble de la période d'étude

Le graphique suivant présente parallèlement les occurrences de vitesses de vent enregistrées par la nacelle et le nombre de contacts enregistrés sous cette vitesse de vent.

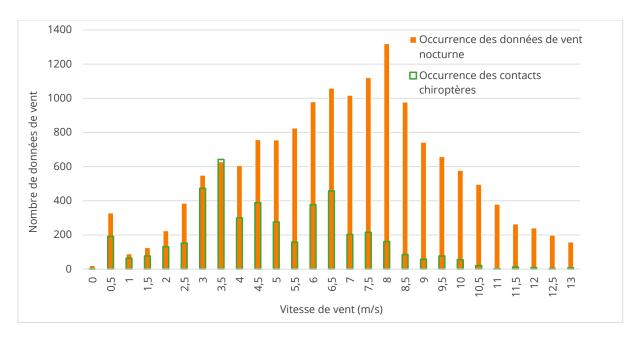


Figure 17 : Activité des chiroptères en fonction de la vitesse du vent

Globalement, ce graphique illustre un décalage de l'activité chiroptérologique sous des vitesses de vent plus faibles à la répartition des occurrences de vent des nuits d'inventaire.

L'activité chiroptérologique s'étale entre des valeurs de vent comprises entre 0,5 et 13 m/s. Globalement, au-delà d'une vitesse de 8 m/s, l'activité chute et devient moins importante avec 92,6 % des contacts enregistrés avant ce seuil.

On notera qu'en général, les espèces de grande taille, telles que les noctules, ont tendance à mieux supporter les vents forts que les petites espèces comme les pipistrelles. On le remarque ici par des valeurs de vent observées au-dessus des valeurs habituelles (de l'ordre de 5 à 6 m/s maximum), dus à la forte proportion de ces espèces sur le site.

Résultats obtenus par analyse mensuelle

L'analyse mensuelle de l'activité des chiroptères expose les mêmes tendances que celles observées sur l'ensemble de la période étudiée, à savoir que l'activité semble s'étaler surtout entre des valeurs de vent comprises entre 0,5 et 8 m/s à hauteur de nacelle. On observe bien la chute à partir de ce seuil mais l'on note que l'activité ne devient pas pour autant négligeable, notamment entre 9 et 10 m/s en juillet et août.

Le mois de juillet enregistre les plus fortes valeurs avec notamment des valeurs de vent pouvant aller à 13 m/s, l'espèce responsable de vol à ces vitesses de vent est la Noctule commune. Cette espèce n'hésite effectivement pas à évoluer sous des vitesses de vents relativement fortes.

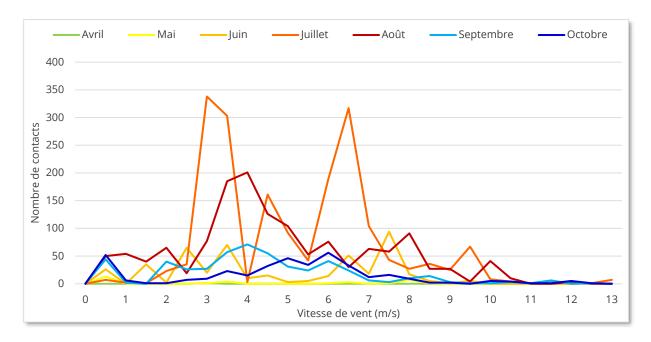


Figure 18 : Activité mensuelle des chiroptères en fonction du vent

3.2.2 Synthèse des résultats du suivi comportemental des chiroptères en nacelle

Au regard des analyses effectuées à partir des enregistrements sur nacelle d'éolienne, les principaux éléments suivants apparaissent :

- la diversité spécifique est modérée avec sept espèces confirmées, dont la Noctule commune, la Noctule de Leisler, l'Oreillard gris, la Pipistrelle commune, la Pipistrelle de Kuhl, la Pipistrelle de Nathusius et la Sérotine commune ;
- on retrouve au sein des espèces inventoriées, essentiellement des espèces pouvant évoluer en hauteur, en cohérence avec les connaissances bibliographiques. À noter les plus fortes proportions de Noctule commune et de Noctule de Leisler, comparativement aux autres espèces présentes;
- l'activité chiroptérologique est plus importante de mi-juillet à mi-août. Cette période correspond au début de période de transit entre les gîtes d'été et les gîtes d'hiver. Ainsi, des phénomènes migratoires sont plausibles ;
- l'activité chiroptérologique en hauteur est éparse tout au long de la nuit sans densification d'activité remarquable hormis sur les mois présentant une forte activité (de juin à mi-septembre). Sur cette période, une forte activité d'une demi-heure à trois heures après le coucher du soleil. Sur les fins de nuit de cette période et sur le reste de l'année, les contacts de chiroptères sont captés sporadiquement sur l'ensemble de la nuit.
- l'activité chiroptérologique en hauteur est marquée surtout à partir de 19 °C;
- l'activité chiroptérologique en hauteur est principalement concentrée entre des vitesses de vent de 0,5 et 9,5 m/s. L'activité présente après ce seuil est plus sporadique, on note cependant des passages de Noctule de Leisler jusqu'à 13 m/s ;
- l'enjeu principal sur le site semble concerner les périodes de départ en transit entre les gîtes estivaux et automnaux entre juillet et août, traduisant potentiellement un phénomène migratoire. Les proportions remarquables de Noctule de Leisler et, surtout, de Noctule commune présentent un enjeu pour le maintien de ces espèces. Les noctules sont effectivement capables de migrer et d'évoluer en hauteur sous de plus fortes vitesses de vent, ce qui présente un risque accru de collision ou de mortalité notamment pour la Noctule commune.

3.3 Bilan et comparaison avec l'étude d'impact

3.3.1 Diversité spécifique

13 espèces de chauves-souris ont été recensées de manière certaine au travers des différentes études (tableau suivant) : l'étude d'impact de 2006 de Tencia, le suivi post-implantation au sol réalisé par Écosphère en 2015 et le suivi post-implantation en hauteur réalisé par ENCIS Environnement en 2022.

		Prés	sence selon les étu	ıdes	
Nom vernaculaire	Nom scientifique	Étude d'impact de 2006 ⁵	Suivis post- implantation 2015 ⁶	Suivis post- implantation 2022	
Barbastelle d'Europe	Barbastellus barbastellus	-	Χ	-	
Grand Murin	Myotis myotis	-	Χ	-	
Grand Rhinolophe	Rhinolophus	-	X	-	
Murin à oreilles échancrées	Myotis emarginatus	-	Χ	-	
Murin de Daubenton	Myotis daubentonii	-	Χ	-	
Murin de Natterer	Myotis nattereri	-	Χ	-	
Noctule commune	Nyctalus noctula	-	Х	Х	
Noctule de Leisler	Nyctalus leisleri	-	Х	Х	
Oreillard gris	Plecotus austriacus	-	Х	Х	
Pipistrelle commune	Pipistrellus pipistrellus	X	X	Х	
Pipistrelle de Kuhl	Pipistrellus kuhlii	-	Х	Х	
Pipistrelle de Nathusius	Pipistrellus nathusii	-	Х	Х	
Sérotine commune	Eptesicus serotinus	X	X	Х	
Recensements n'ayant pas pu	être déterminés à l'espèce				
Murin sp.	Myotis sp.	-	X	-	
Oreillard sp.	Plecotus sp.	X	Х	-	
Pipistrelle sp.	Pipistrellus sp.	-	Х		
Sérotine / Noctule sp.	Eptesicus / Nyctalus sp.	-	Х	Х	
Total des espèces	13	2	13	7	
Espèce présente durant les trois périodes d'études					

Tableau 32 : Résultats de la diversité spécifique en fonction des études menées sur le site

L'étude d'impact de 2006 a permis de recenser deux espèces à proximité du site, contre 13 pour le suivi post-implantation de 2015 (Écosphère, 2015) et sept en 2022 (ENCIS Environnement, 2022).

À noter que les protocoles menés entre les différentes études ont été différents et sont difficilement comparables :

⁶ Écosphère, 2015

⁵ Tencia, 2006

En 2006 : seuls quelques points d'écoutes ont été effectués. Ils ont révélé deux espèces de chiroptères en dehors des limites du site.

En 2015 : les inventaires ont été réalisés au sol avec plusieurs protocoles d'écoute acoustique. Le cortège chiroptérologique plus large inventorié est lié à un plus grand nombre d'espèces évoluant à proximité du sol qu'à hauteur de nacelle.

En 2022 : les inventaires sur nacelle permettent de détecter seulement les espèces de chauvessouris capables d'évoluer en hauteur, à de plus rares exceptions.

Globalement et malgré les différents protocoles utilisés, ceci témoigne d'une diversité spécifique globale modérée.

Deux espèces seulement sont communes aux trois périodes d'inventaires, ce qui atteste de leur occupation régulière du site. Ces espèces sont parmi les plus communes en Europe : la Pipistrelle commune et la Sérotine commune. Ce sont des espèces généralistes et qui sont capables de voler en hauteur.

Parmi les espèces présentes, des cortèges plus forestiers sont présents en 2015 avec les protocoles au sol (Murin de Natterer, Murin à oreilles échancrées, Barbastelle d'Europe, etc.). Ces différences s'expliquent par les protocoles utilisés.

3.4 Principaux éléments à retenir du suivi ICPE

Au terme du suivi de l'année 2022, il apparait que le cortège des espèces de haut-vol, ou capables d'évoluer en hauteur (sensibles à l'éolien), est toujours présent avec la Pipistrelle commune, la Pipistrelle de Nathusius, la Pipistrelle de Kuhl, la Sérotine Commune et la Noctule de Leisler. Au vu de la concordance des résultats du suivi post exploitation de 2015 (Écosphère, 2015) avec ceux du suivi post-implantation de 2022, nous pouvons conclure que le site reste fréquenté par les chiroptères. Cependant, il est impossible d'évaluer si l'on observe une modification de la fréquentation du site par les populations locales de 2015 (protocoles différents). La fréquentation chiroptérologique du site est maximale sur les mois de juillet et d'août où 70 % des contacts annuels sont regroupés. Cela pourrait s'expliquer par la présence de colonies à proximité. Afin de pouvoir affiner la fréquentation du site et conclure sur des résultats plus fiables, une deuxième année d'écoute sur nacelle d'éolienne est programmée en 2023.

<u>En conclusion</u>: le site de Pièces de Vignes présente une activité chiroptérologique non négligeable, notamment sur des espèces particulièrement sensibles à l'éolien. À la vue de la mortalité constatée (cinq Noctule commune, une Pipistrelle commune et une Pipistrelle de Kuhl), la mise en place d'un plan de bridage préventif est préconisée.

4 Résultats du suivi de la mortalité de l'avifaune et des chiroptères

4.1 Résultats des tests et paramétrage des méthodes d'estimation

4.1.1 Durée moyenne de l'intervalle

La durée moyenne de l'intervalle (I) entre deux prospections est déterminée afin d'être prise en compte dans les calculs d'estimation de la mortalité.

La durée moyenne de l'intervalle est : I = 6,67 jours

4.1.2 Efficacité du chercheur

Le test d'efficacité a pour but de déterminer l'efficacité du chercheur afin d'inclure ce paramètre dans l'estimation de la mortalité. Les résultats sont présentés dans le tableau suivant.

Test	Chercheur	Date	Nombre de cadavres déposés	Nombre de cadavres trouvés
T1	Lucile MARGOT	7 juin 2022	25	20
T2	Lucile MARGOT	16 août 2022	35	21
	Total		60	41

Tableau 10 : Résultats des tests d'efficacité

Le coefficient d'efficacité du chercheur est : d = 0,70

4.1.3 Persistance des cadavres

Le test de persistance a pour but de déterminer différents coefficients liés à la durée de persistance des cadavres. Ces paramètres sont ensuite inclus dans les méthodes d'estimation de la mortalité. Les résultats sont présentés dans le tableau suivant.

Test	Date	Nombre de cadavres déposés	Nombre de cadavres restant						
			J+1	J+2	J+3	J+6	J+9	J+13	J+16
T1	7 juin 2022	25	0	-	0	0	0	0	0
T2	16 août 2022	35	8	6	3	0	0	0	0
Total		60	8	6	3	0	0	0	0

Tableau : Résultats des tests de persistance

La durée moyenne de persistance des cadavres est : t = 0,79

4.1.4 Surfaces prospectées et correction surfacique

La correction surfacique appliquée à l'estimation de la mortalité est calculée d'après les surfaces prospectées sur le terrain (tableau suivant). Celle-ci varie au cours du suivi, notamment en fonction de l'occupation des sols et de leur gestion. Pour rappel, la surface théorique de prospection est de 10 000 m² par éolienne soit 50 000 m² par prospection pour l'ensemble du parc.

Carrella	D. C.	Surface prospectée / éolienne (m²)						
Sortie	Date	E1	E2	E3	E4	E5	Total	
1	24/05/2022	1 037	1 583	1 181	709	420	4 930	
2	03/06/2022	1 037	1 583	1 181	709	420	4 930	
3	07/06/2022	1 037	1 583	1 181	709	420	4 930	
4	13/06/2022	1 037	1 583	1 181	709	420	4 930	
5	20/06/2022	10 000	1 583	1 181	709	10 000	23 473	
6	27/06/2022	10 000	1 583	1 181	709	10 000	23 473	
7	04/07/2022	10 000	10 000	10 000	709	10 000	40 709	
8	11/07/2022	10 000	10 000	10 000	10 000	10 000	50 000	
9	27/07/2022	10 000	10 000	9 076	10 000	10 000	49 076	
10	10/08/2022	10 000	7 270	9 076	10 000	10 000	46 346	
11	16/08/2022	10 000	7 270	10 000	10 000	10 000	47 270	
12	24/08/2022	5 325	7 270	9 500	10 000	10 000	42 095	
13	30/08/2022	10 000	7 270	9 500	10 000	10 000	46 770	
14	07/09/2022	10 000	7 270	9 500	10 000	10 000	46 770	
15	14/09/2022	10 000	7 000	9 000	10 000	10 000	46 000	
16	21/09/2022	10 000	7 000	8 500	9 291	10 000	44 791	
17	29/09/2022	10 000	7 000	8 500	1 000	10 000	36 500	
18	05/10/2022	10 000	6 000	7 500	10 000	10 000	43 500	
19	13/10/2022	10 000	4 000	5 500	10 000	10 000	39 500	
20	19/10/2022	10 000	4 000	5 000	10 000	10 000	39 000	
21	27/10/2022	10 000	10 000	9 000	10 000	10 000	49 000	
Moyenne sur l'	ensemble du suivi	8 649	7 028	7 558	7 508	8 723	39 466	
	A	1,16	1,42	1,32	1,33	1,15	0,25	

Tableau 11 : Synthèse des surfaces prospectées et des facteurs de correction surfacique associés

La proportion moyenne de surface prospectée sur l'ensemble du suivi est de 0,79 (soit 79 %). Le coefficient de correction surfacique moyen sur l'ensemble du parc et des prospections est de : A = 1,27.

4.2 Mortalité de l'avifaune

4.2.1 Bilan des connaissances sur la mortalité de l'avifaune liée à l'éolien

4.2.1.1 Les principaux facteurs de mortalité de l'avifaune

À l'exception des parcs éoliens denses et situés dans des zones particulièrement riches en oiseaux, la mortalité par collision est généralement faible par rapport aux autres activités humaines (tableau suivant). Le taux de mortalité varie selon les parcs de 0 à 60 oiseaux par éolienne et par an (programme « éolien biodiversité » - parcs européens). Ces chiffres dépendent de la configuration du parc éolien, de la densité et des caractéristiques des oiseaux qui fréquentent le site, du relief, et plus globalement, des caractéristiques topographiques et paysagères (présence de voies de passage, de haies, de zones d'ascendance thermique). À titre de comparaison, le réseau routier serait responsable de la mort de 30 à 100 oiseaux par km/an, le réseau électrique de 40 à 120 oiseaux par km/an.

Cause de mortalité	Commentaires
Ligne électrique haute tension (> 63 kV)	80 à 120 oiseaux/km/an (en zone sensible) ; réseau aérien de 100 000 km
Ligne moyenne tension (20 à 63 kV)	40 à 100 oiseaux/km/an (en zone sensible) ; réseau aérien de 460 000 km
Autoroute, route	Autoroute: 30 à 100 oiseaux/km/an; réseau terrestre de 10 000 km
Chasse (et braconnage)	Plusieurs millions d'oiseaux chaque année
Agriculture	Evolution des pratiques agricoles, pesticides, drainage des zones humides.
Urbanisation	Collision avec les bâtiments (baies vitrées), les tours et les émetteurs.
Eoliennes	0 à 10 oiseaux / éolienne / an ; 2456 éoliennes en 2008, environ 10000 en 2020

Tableau 12 : Cause de mortalité des oiseaux (Guide de l'étude d'impact des parcs éoliens 2010, d'après les données issues de la LPO, AMBE)

Les différentes espèces interagissent différemment face à un parc éolien :

- les espèces plus sensibles à l'effarouchement (limicoles, anatidés, grues, aigles, etc.), sont plus méfiantes vis-à-vis des éoliennes en mouvement et par conséquent moins sensibles au risque de collision ;
- les espèces moins farouches sont potentiellement plus sensibles à la mortalité par collision avec les pales (milans, buses, Faucon crécerelle, busards, martinets, hirondelles, etc.).

4.2.1.1.1 Situations et facteurs à risques

De manière générale, certaines situations peuvent accroître les risques de collision. Les principaux critères sont :

- les hauteurs et types de vol des espèces,
- le comportement de chasse chez les rapaces,
- les phénomènes de regroupement des espèces en migration, notamment chez les migrateurs nocturnes,
 - les conditions de brouillard ou de nuages bas et les vents forts de face.

4.2.1.1.2 Sensibilité et vulnérabilité des espèces

Il est possible de déterminer un **indice de sensibilité** des espèces d'oiseaux vis-à-vis du risque de collision en se basant sur les cas de mortalité recensés en Europe (Dürr, 2022) et sur l'abondance des espèces (BirdLife International, 2017). Un niveau de sensibilité de 0 à 4 a ainsi été attribué à chaque espèce présente en Europe.

Ainsi, trois rapaces sont définis comme les espèces les plus sensibles (niveau 4). Il s'agit du Vautour fauve, du Milan royal et du Pygargue à queue blanche. 17 espèces, dont le Circaète Jean-le-Blanc, le Milan noir, le Grand-duc d'Europe, le Balbuzard pêcheur, le Faucon pèlerin et le Faucon crécerelle atteignent le niveau de sensibilité 3.

4.2.1.1.3 Espèces les plus impactées

Les rapaces et migrateurs nocturnes (roitelets, martinets etc.) sont des espèces généralement considérées comme les plus exposées au risque de collision avec les turbines (« Impact des éoliennes sur les oiseaux », ONCFS, 2014).

Certains rapaces, en particulier les espèces à tendance nécrophage tels les milans, la Buse variable ou encore les busards, peuvent être attirés sur les parcelles cultivées lors des travaux agricoles (notamment la fauche des prairies au printemps et les moissons en été) et par l'ouverture des milieux liée au défrichement.

Pendant les migrations, les impacts semblent survenir plus particulièrement la nuit. Les espèces qui ne migrent que de jour (rapaces, cigognes, fringilles, etc.) sont généralement capables d'adapter leurs trajectoires à distance. En effet, comme cela a été démontré dans l'étude d'Abies (2002), 88 % des oiseaux changent leur trajectoire à la vue des éoliennes. Ces comportements d'anticipation participent à la réduction des situations à risques.

4.2.1.2 Bilans national et européen de la mortalité de l'avifaune

Le bilan national suivant s'appuie sur le rapport « le parc éolien français et ses impacts sur l'avifaune, LPO, 2017 ».

En France, 5 156 éoliennes étaient déjà construites et en fonctionnement en avril 2016, et 1 017 autres ont obtenu un permis de construire et d'exploitation. Les parcs en France ont en moyenne 7,7 machines d'une hauteur moyenne de 139 mètres en bout de pale. Sur l'ensemble des éoliennes du parc français, seulement 645 ont fait l'objet d'un suivi de la mortalité, soit 12,5 %.

Parmi les suivis réalisés, seuls 80% ont été effectués sur une surface d'au moins 1 ha. Le nombre de prospections est variable, allant d'un passage à l'année à plusieurs passages par semaine tout au long de l'année. Au total 37 839 prospections ont été réalisées, le plus souvent au printemps, en été et en automne.

Au total, 31 parcs possèdent un suivi acceptable (au moins 26 semaines de suivi avec un passage par semaine). Lors de ces suivis, 485 cadavres ont été notés sur 189 éoliennes soit environ 1,24 oiseau/éolienne/an.

Si l'on se concentre sur les neuf parcs ayant fait l'objet d'un suivi plus robuste (au moins une sortie par semaine pendant 48 semaines lors d'une année sur une surface d'au moins 50 mètres autour de l'éolienne), on dénombre 293 cadavres d'oiseaux pour 49 éoliennes, soit un ratio de 2,15 oiseaux/éolienne/an. Pour remarque : « [...] les neuf parcs évoqués ci-dessus se trouvent soit en ZPS (pour 5 d'entre eux), soit à proximité immédiate (476 m, 574 m, 1 027 m et 1 874 m de la ZPS la plus proche) [...] ». Ainsi en fonction des parcs et des suivis, la mortalité brute varie entre 1,24 à 2,15 oiseaux/éolienne/an.

Pour finir, huit parcs ont fait l'objet d'estimation selon les quatre méthodes préconisées soit 1,38 % des éoliennes françaises. Ces parcs possèdent tous une sensibilité particulière : proximité d'une ZPS, de forêts de feuillus ou présence d'une mosaïque de milieux. Les estimations sont comprises entre 0,3 et 26,8 oiseaux/éolienne/an. Toutefois, une fois exclu des calculs un parc comprenant une forte mortalité de pigeons (présence d'un silo à grain à proximité), la mortalité estimée est de 0,3 à 7,6 oiseaux/éolienne/an, soit une moyenne de 4,2 et une médiane de 3,6.

D'un point de vue qualitatif (figure suivante et annexe), les groupes d'espèces les plus impactés en Europe sont, par ordre décroissant, les Passeriformes, les Accipitriformes, les Charadriiformes puis les Falconiformes (d'après Dürr, 2022).

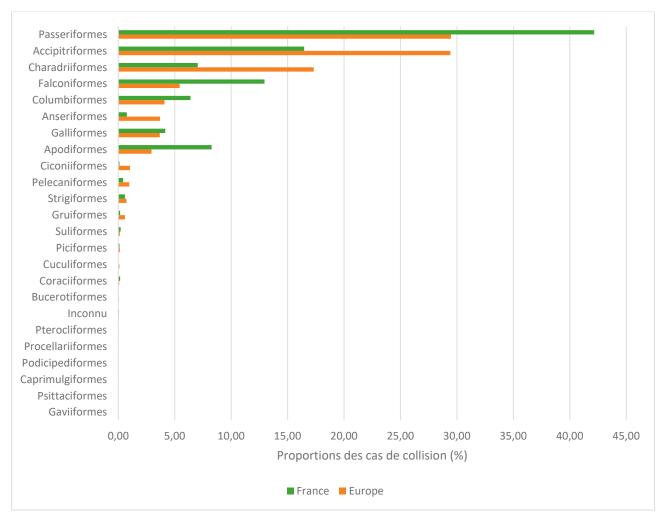


Figure 19 : Proportions (%) des cas de collision avec les éoliennes en fonction des ordres, en France et en Europe (d'après Dürr, 2022)

4.2.2 Bilan des connaissances de l'étude d'impact

L'étude d'impact, réalisée en 2005 par le bureau d'étude Tencia, a révélé la présence de deux espèces à enjeu au niveau européen ainsi que trois autres espèces notables dont il conviendra de surveiller l'apparition d'éventuels cas de mortalité (figure suivante) :

- l'Alouette des champs,
- le Busard Saint-Martin,
- la Caille des blés,
- la Grue cendrée,
- la Perdrix grise,
- le Pluvier doré.

OISEAUX NICHEURS D'INTÉRÊT EUROPÉEN (ANNEXE I DIRECTIVE OISEAUX) Busard St-Martin	OUI	1 cp nicheur sur le site (Parcelles céréalières et/ou de friches)
OISEAUX MIGRATEURS D'INTÉRÊT EUROPÉEN (ANNEXE I DIRECTIVE OISEAUX) Grue cendrée Pluvier doré	OUI OUI	Passage migratoire (stationnement exceptionnel) Passage et stationnement migratoire
AUTRES ESPÈCES NOTABLES (OISEAUX) : Alouette des champs Caille des blés Perdrix grise	OUI OUI OUI	5-6 cp nicheurs sur la zone 1-2 cp nicheurs sur la zone 1 compagnie sur la zone (Est)

Figure 20 : Espèce à enjeu européens et notables, inventoriées durant l'étude d'impact réalisée en 2005 (Tencia)

4.2.3 Résultats globaux du suivi de l'avifaune en 2018

4.2.3.1 Mortalité brute

Sur le parc de Pièces de Vignes, six cadavres d'oiseaux appartenant à quatre espèces ont été retrouvés dont un individu retrouvé hors-protocole (tableau suivant). Celui-ci ne sera pas comptabilisé dans l'analyse comparative des données mais pris en compte pour les conclusions. Cela représente une mortalité brute de 1,2 individu / éolienne durant la période de suivi s'étalant de mi-mai à mi-octobre, soit 21 prospections, à raison d'une prospection par semaine. Cette mortalité brute est ainsi équivalente à 0,06 individu / éolienne / sortie.

Les espèces les plus retrouvées sont le Roitelet à triple bandeau et le Rougegorge familier (deux individus de chaque espèce). Par ailleurs, deux autres espèces ont été recensées, à raison d'un individu pour chaque espèce.

Le tableau suivant synthétise les caractéristiques de chaque cadavre recensé durant le suivi.

Date	Espèce	Éolienne	Source	Statut biologique	Sexe	Âge
27/07/2022	Faucon hobereau	E2	Protocole	Nidification	F	Adulte
07/09/2022	Roitelet à triple bandeau	E4	Protocole	Migration postnuptiale	-	-
21/09/2022	Roitelet à triple bandeau	E5	Hors protocole	Migration postnuptiale	-	-
13/10/2022	Hirondelle de fenêtre	E1	Protocole	Migration postnuptiale	-	-
19/10/2022	Rougegorge familier	E1	Protocole	Migration postnuptiale	-	-
27/10/2022	Rougegorge familier	E2	Protocole	Migration postnuptiale	-	-

Tableau 13 : Oiseaux découverts lors du suivi mortalité

Avec six cadavres d'oiseaux recensés, la mortalité brute observée sur le parc de Pièces de Vignes est de 1,2 individu / éolienne sur la période de suivi s'étalant de mi-mai à mi-octobre.

4.2.3.2 Mortalité estimée

Le tableau suivant compile les résultats de la mortalité estimée pour l'ensemble du parc éolien sur la période de suivi, selon les différentes méthodes retenues (estimations calculées via le logiciel EolApp du CEFE Montpellier, https://shiny.cefe.cnrs.fr/eolapp). L'intervalle de confiance à 95 % est également mentionné.

			Intervalle de		
Méthodes	Globale	/éolienne	/sortie	/éolienne/sortie	confiance à 95 % (mortalité globale)
Erickson	73,5	14,7	3,5	0,7	21,8 - 149,4
Huso	127,4	25,5	6,1	1,2	123,5 – 974,9
Jones	542,3	108,5	25,8	5,2	35,00 - 314,3

Tableau 14 : Estimations de la mortalité de l'avifaune pour l'ensemble du parc sur la période de suivi selon les méthodes utilisées

Selon les estimateurs, la mortalité estimée varie de 73 à 542 individus pour l'ensemble du parc sur la période de suivi, et la mortalité réelle devrait se situer entre 22 à 975 individus, avec un risque d'erreur de 5 % (pour chaque estimateur).

La mortalité estimée est très éloignée de la mortalité brute (n = 5).

La précision des estimations est faible. Cependant, au moins 22 cadavres sont estimés sur la période suivie.

Les paramètres correcteurs peuvent avoir un impact fort. C'est notamment le cas pour les valeurs correctives liées à la persistance des cadavres, qui reflète une forte prédation sur le parc de Pièces de Vignes. Ceci indique pourquoi la précision des estimations est si peu élevée.

Dans les paragraphes suivant (résultats saisonniers et spatialisés), compte tenu du faible nombre de données et/ou de l'absence d'hypothèse biologique expliquant les variations constatées et/ou de la non-homogénéité du suivi (nombre de sortie, périodes couvertes, etc.), le calcul d'une mortalité estimée est susceptible de ne pas être pertinent ou réalisable. Le cas échéant, seule la mortalité brute est analysée.

4.2.3.3 Analyse par groupes taxonomiques

Les six cadavres d'oiseaux trouvés correspondent à cinq passeriformes et un falconiforme. Il convient de considérer que cette mortalité observée n'est pas nécessairement représentative de la mortalité réelle par groupe taxonomique.

Les passereaux font effectivement partie des groupes les plus impactés en France et en Europe (cf. bilan national de la mortalité avifaune). Cependant, les falconiformes sont plus rarement découverts. Une comparaison entre ces résultats doit être étudiée avec prudence étant donné le faible nombre de données issues du parc de Pièces de Vignes.

Sur le parc de Pièces de Vignes, en 2022, les cadavres retrouvés appartiennent majoritairement au groupe des passeriformes, suivi par les falconiformes.

4.2.4 Résultats saisonniers

4.2.4.1 Mortalité brute

Au cours de ce suivi, les cadavres d'oiseaux ont été retrouvés durant les mois de juillet, septembre et octobre (figure suivante).

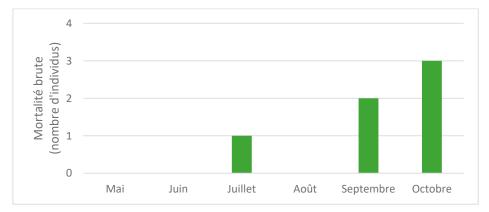


Figure 21 : Mortalité brute observée sur le parc en fonction de chaque mois suivi

La mortalité observée est plus importante au mois d'octobre. Les cadavres retrouvés ce mois correspondent à des individus migrateurs (Hirondelle de fenêtre et Rougegorge familier). Dans une moindre mesure, des cadavres ont également été retrouvés au mois de juillet et de septembre. Il s'agit d'individus migrateur également (Roitelet à triple bandeau) ou de nicheur (Faucon hobereau).

La mortalité fluctue entre 1 et 3 individus sur les mois concernés par des cas de mortalité. Malgré le faible nombre de données, la mortalité semble se concentrer sur la période de migration postnuptiale, qui concerne cinq individus sur six retrouvés. Cette tendance est à modérer car de potentiels prélèvements de cadavres entre les prospections ont pu être réalisés. Par conséquent, il n'est pas impossible que d'autres périodes aient aussi été mortifères lors du suivi.

4.2.5 Résultats spatialisés par éolienne

4.2.5.1 Mortalité brute

Durant ce suivi, les six cadavres d'oiseaux ont été retrouvés sous les éoliennes E1, E2, E4 et E5 (carte suivante). Étant donnés les facteurs tels que, notamment, la prédation, il n'est pas impossible que l'éolienne E3 ait provoqué une mortalité non observée lors du suivi.

Carte 4 : Répartition des cadavres d'oiseaux trouvés par éolienne

Figure 22 : Mortalité brute par éolienne sur l'ensemble de la période de suivi

4.2.6 Causes potentielles de la mortalité engendrée sur le parc éolien

Il existe de nombreux facteurs pouvant engendrer ou accroitre les risques de collision des oiseaux avec les turbines :

- le comportement (d'une espèce en général ou d'individus en particulier),
- la **période** (les comportements et l'abondance des individus peuvent être modifiés en fonction des différentes phases biologiques),
- la **localisation du parc** (présence de relief, de couloir de migration, de zones d'intérêt pour l'alimentation ou le repos, *etc.*) ;
- les caractéristiques des éoliennes (nombre d'éolienne, agencement, taille et hauteur du rotor, etc.);
- les conditions météorologiques (brouillard, vent, etc.).

L'origine d'une collision est souvent multifactorielle. Il convient ainsi, lorsque cela est possible, de les identifier afin de déterminer les causes de la mortalité sur le parc éolien, et si cela est justifié, d'appliquer d'éventuelles mesures correctrices.

D'après les caractéristiques des individus retrouvés, ainsi que des analyses spatiales et saisonnières effectuées précédemment dans ce rapport, une cause récurrente pourrait être à l'origine de la mortalité sur le parc de Pièces de Vignes.

La distribution saisonnière des cas de mortalité révèle une mortalité plus forte lors de la saison de migration postnuptiale. En outre, et étant donnée leur phénologie, les cinq individus retrouvés durant cette période (deux Roitelets à triple bandeau dont un hors protocole, une Hirondelle de fenêtre et deux Rougegorges familiers) semblent effectivement avoir été tués lors de leur passage migratoire. Compte tenu de ces éléments, le parc éolien de Pièces de Vignes pourrait impacter particulièrement les oiseaux en migration postnuptiale. La mortalité sur cette période reste toutefois modérée et des suivis complémentaires seraient nécessaires pour vérifier cette hypothèse.

La cause principale de la mortalité sur le parc pourrait être liée à l'emplacement du parc sur un secteur de passage régulier en migration postnuptiale.

4.2.7 Incidences spécifiques du parc éolien sur l'avifaune

4.2.7.1 Patrimonialité, sensibilité et vulnérabilité des espèces

Le tableau suivant synthétise les statuts réglementaires et de conservation des espèces ayant été directement impactées par le parc de Pièces de Vignes, ainsi que leur sensibilité et leur vulnérabilité face au risque de collision avec les éoliennes.

		Statut de protection		St	atut de co	nservation r				
Ordre Esp	F>	Diatas de protection		France			France Centre			- cc c
	Espèce	Directive Oiseaux	Oiseaux protégés (France)	Europe	Nicheur	Migrateur	Hivernant	Nicheur	(collision)	Effectifs
Falconiformes	Faucon hobereau	-	Article 3	LC	LC	NA	-	NT	2	1
	Hirondelle de fenêtre	-	Article 3	LC	NT	DD	-	LC	2	1
Passériformes	Roitelet à triple bandeau	-	Article 3	LC	LC	NA	NA	LC	1	1 (+1 hors protocole)
	Rougegorge familier	-	Article 3	LC	LC	NA	NA	LC	0	2

LC : Préoccupation mineure / NT : Quasi-menacée / VU : Vulnérable / EN : En danger / CR : En danger critique / DD : Données insuffisantes / NA : Non applicable

Tableau 15 : Statuts des différentes espèces impactées et nombre de collision observées

Aucune des quatre espèces découvertes n'est menacée. Toutefois, le Faucon hobereau est classé « Quasi menacée » en région Centre et l'Hirondelle de fenêtre est classée « Quasi menacée » au niveau national pour sa population nicheuse (l'individu découvert est un migrateur). Ces deux espèces présentent en outre une sensibilité moyenne au risque de collision (2/4).

4.2.7.2 Incidences sur les populations des espèces concernées

Parmi les espèces portant des enjeux élevés, ciblées lors de l'étude d'impact de 2005 (Busard Saint-Martin, Grue cendrée et Pluvier doré), aucun cas de mortalité n'a été avéré.

Le **Faucon hobereau** est classé « Quasi menacée » au niveau régional. Il ne s'agit pas d'une espèce menacée (VU, EN ou CR), mais une vigilance doit être apportée à cette espèce. De plus, lors du précédent suivi de mortalité en 2015, un Faucon hobereau avait également fait l'objet d'un cas de mortalité. Avec un cas de mortalité recensé en 2022, l'impact peut être qualifié de faible et non significatif à ce stade. Cependant, il sera nécessaire de surveiller si d'éventuels nouveaux cas surviennent, afin de pouvoir éventuellement en limiter les causes.

Le **Roitelet à triple bandeau** et le **Rougegorge familier** ne possèdent pas de statuts de conservation défavorables. Avec deux cas de mortalité recensés pour chacune de ces espèces (dont un hors protocole pour le Roitelet à triple bandeau), l'impact du parc peut être qualifié comme très faible et non-significatif.

L'Hirondelle de fenêtre est classée « Quasi menacée » à l'échelle nationale et subit un déclin important à cette échelle (-28 % des effectifs entre 2001 et 2019). Cette espèce a fait l'objet d'un cas de mortalité recensé au sein du parc de Pièces de Vignes en 2022. Sans récurrence de la mortalité observée chez cette espèce, l'impact du parc peut être qualifié comme faible et non-significatif. Toutefois, il sera nécessaire de surveiller si d'éventuels nouveaux cas surviennent, afin de pouvoir éventuellement en limiter les causes.

Parmi les espèces à enjeu, ciblées lors de l'étude d'impact, aucun cas de mortalité n'a été avéré. Compte tenu de la mortalité observée et des effectifs concernés, le parc de Pièces de Vignes ne présente pas, à l'heure actuelle, d'impact significatif sur une espèce particulière. Toutefois, un minimum de 22 cadavres est estimé sur la période de suivi. En fonction des espèces concernées, cette mortalité pourrait représenter un impact significatif. Ainsi, il sera nécessaire de surveiller avec attention l'apparition de cas de mortalité d'espèces menacées durant les prochaines années de suivi, ainsi que l'évolution des cas de mortalité du Faucon hobereau et de l'Hirondelle de fenêtre.

4.2.8 Comparaisons avec des données de 2022 avec celles de 2015

4.2.8.1 Comparaison des résultats globaux

4.2.8.1.1 Mortalité brute

La comparaison de la mortalité sur le parc de Pièces de Vignes est basée sur les sorties effectuées en 2015 (Écosphère, 2016b) et 2022. Sur ce parc, six oiseaux ont été retrouvés en 2015 et en 2022 soit 12 individus au total (tableau suivant). La mortalité brute en 2022 est la même qu'en 2015. Cependant, les protocoles menés entre les deux années de suivi sont différents (nombre de passage, nombre d'éoliennes suivies, surface prospectée théorique par éolienne). Ainsi, l'évolution de la mortalité ne peut être appréciée ici.

Les espèces les plus impactées sur les deux années de suivi sont le Faucon crécerelle, le Roitelet à triple bandeau et le Rougegorge familier. Sur les six espèces retrouvées en 2015, une seule est également retrouvée en 2022 : le Faucon hobereau.

Fanàsa	Α	nnée
Espèce	2015	2022
Faucon crécerelle	2	0
Faucon hobereau	1	1
Bruyant proyer	1	0
Buse variable	1	0
Martinet noir	1	0
Roitelet à triple bandeau	0	1 (+1 hors protocole)
Hirondelle de fenêtre	0	1
Rougegorge familier	0	2

Tableau 16 : Mortalité brute observée par espèce sur le parc en 2015 et 2022

Le faible nombre de données récoltées sur les deux années suivies et les différences de protocoles ne permettent pas de dégager une tendance concernant l'évolution des cas de mortalité.

4.2.8.1.2 Mortalité estimée

Aucun calcul de mortalité estimée n'a été réalisé en 2015, il n'est donc pas possible de réaliser de comparaison.

4.2.8.2 Comparaison des résultats saisonniers

4.2.8.2.1 Mortalité brute

En 2015 et 2022, les deux phases biologiques suivies (reproducteurs et migrateurs postnuptiaux) ont été concernées par des cas de mortalité. La mortalité brute est supérieure en 2022 pour les migrateurs postnuptiaux alors qu'en 2015 il s'agissait des reproducteurs.

Année	Hivernants	Migrateurs prénuptiaux	Reproducteurs	Migrateurs postnuptiaux
2015	0	0	4	2
2022	0	0	1	5

Tableau 17 : Mortalité brute sur l'ensemble du parc en fonction de la phase biologique en 2015 et 2022

Le faible nombre de données récoltées sur les deux années suivies et les différences de protocoles ne permettent pas de dégager une tendance concernant l'évolution des cas de mortalité par saison.

4.2.8.2.2 Mortalité estimée

Aucun calcul de mortalité estimée n'a été réalisé en 2015, il n'est donc pas possible de réaliser de comparaison.

4.2.8.3 Comparaison des résultats spatialisés

4.2.8.3.1 Mortalité brute

Le faible nombre de données récoltées sur les deux années suivies et les différences de protocoles (seulement trois éoliennes suivies en 2015) ne permettent pas de dégager une tendance concernant l'évolution des cas de mortalité par éolienne.

Aucune comparaison n'a pu être réalisée concernant les résultats spatialisés entre les années 2015 et 2022.

4.2.9 Synthèse

- La mortalité brute relevée sur l'ensemble du suivi (mai à octobre 2022) est de six individus (un Faucon hobereau, deux Roitelets à triple bandeau dont un hors protocole, une Hirondelle de fenêtre et deux Rougegorges familiers).
- Selon les estimateurs, la mortalité estimée varie de 73 à 542 individus pour l'ensemble du parc sur la période de suivi, et la mortalité réelle devrait se situer entre 22 à 975 individus, avec un risque d'erreur de 5 % (pour chaque estimateur).
- La mortalité de l'avifaune sur le parc de Pièces de Vignes semble plus concentrée sur la période de migration postnuptiale. L'emplacement du parc sur un secteur de passage régulier en migration postnuptiale pourrait être en lien avec les cas de mortalité recensés.
- Parmi les espèces découvertes, l'Hirondelle de fenêtre présente un état de conservation défavorable à l'échelle nationale.
- Parmi les espèces à enjeu, ciblées lors de l'étude d'impact (Busard Saint-Martin, Grue cendrée et Pluvier doré), aucun cas de mortalité n'a été avéré.

• Compte tenu de la mortalité observée et des effectifs concernés, le parc de Pièces de Vignes ne présente pas, à l'heure actuelle, d'impact significatif sur une espèce particulière. Toutefois, un minimum de 22 cadavres est estimé sur la période de suivi. En fonction des espèces concernées, cette mortalité pourrait représenter un impact significatif. Ainsi, il sera nécessaire de surveiller avec attention l'apparition de cas de mortalité d'espèces menacées durant les prochaines années de suivi, ainsi que l'évolution des cas de mortalité du Faucon hobereau et de l'Hirondelle de fenêtre.

4.3 Mortalité des chiroptères

4.3.1 Bilan des connaissances sur la mortalité des chiroptères liée à l'éolien

4.3.1.1 Les principaux facteurs de la mortalité des chiroptères

La mortalité des chauves-souris peut être liée à différents facteurs : collision directe, barotraumatisme, écrasement dans les mécanismes de rouage, intoxication suite à l'absorption d'huile de rouage, etc.

La mortalité par contact direct ou indirect avec les aérogénérateurs reste l'impact le plus significatif des parcs éoliens sur les chiroptères (Brinkmann *et al.,* 2011). Ces collisions ont pour conséquences des blessures létales ou sublétales (Grodsky *et al.,* 2011).

La synthèse bibliographique d'Eva Schuster (Schuster *et al.,* 2015) s'est appuyée sur plus de 220 publications scientifiques dans le but de dresser un état des lieux des connaissances en la matière et de confronter ces différentes hypothèses. Cette publication sert de base à la synthèse suivante.

4.3.1.1.1 Mortalité indirecte

Outre la mortalité la plus évidente résultant de la collision directe des chauves-souris avec les pales des éoliennes, d'autres cas de mortalité indirecte sont documentés :

- un <u>phénomène de pression/décompression</u> se produit lors de la rotation des pales et de leur passage devant le mat. La chute brutale de la pression de l'air pourrait impliquer de sérieuses lésions internes des individus passant à proximité des pales, nommés barotraumatismes ;
- la rotation des pales d'éoliennes pourrait provoquer <u>un vortex</u> (tourbillon d'air) susceptible de piéger les chauves-souris passant à proximité (Horn *et al.,* 2008);
- les <u>courants d'air créés par la rotation des pales</u> seraient susceptibles d'entrainer des torsions du squelette des chiroptères passant à proximité, ce qui pourrait aboutir à des luxations ou des fractures des os alaires (Grodsky *et al.*, 2011);
- les <u>collisions sublétales</u> où des individus percutés par des pales pourraient survivre pendant un temps. Ce type de collision aboutit potentiellement au décès des individus mais pourraient ne pas être comptabilisé lors des suivis si ceux-ci ont pu s'éloigner du rayon de recherche entre-temps.

4.3.1.1.2 La saisonnalité, les conditions météorologiques ou le type d'habitat, comme facteurs de mortalité par collision fortuite

La majorité des auteurs s'accordent sur le fait que la **saisonnalité** joue un rôle prépondérant sur la mortalité des chiroptères par collision avec des aérogénérateurs : l'activité chiroptérologique et donc la mortalité sont les plus élevées en fin d'été-début d'automne (Arnett *et al.,* 2006 ; Dürr, 2002 ; Doty & Martin, 2012 ; Hull & Cawthen, 2013 ; Brinkmann *et al.,* 2006, 2011 ; Grodsky *et al.,* 2012 ; etc.).

Les **conditions météorologiques** influent directement ou indirectement sur la disponibilité en ressources alimentaires (notamment les insectes pour les chauves-souris européennes) et sur les conditions de vol des chiroptères, donc sur le taux de mortalité par collision (Baerwald & Barclay, 2011).

Le paramètre le plus influent semble être la <u>vitesse du vent</u>. Rydell *et al.* (2010) ont noté des activités maximales pour une vitesse de vent entre 0 et 2 m/s, puis, de 2 à 8 m/s, une activité diminuant pour devenir inexistante au-delà de 8 m/s. Behr *et al.* (2007) arrivèrent aux mêmes conclusions pour des vitesses de vent supérieures à 6,5 m/s

La <u>température</u> semble également jouer un rôle sur l'activité chiroptérologique. Si plusieurs auteurs concluent à une corrélation positive entre augmentation de la température et activité (Redell *et al.*, 2006; Arnett *et al.*, 2006, 2007; Baerwald & Barclay, 2011; etc.), d'autres ne considèrent pas ce paramètre en tant que facteur influant de manière indépendante sur l'activité chiroptérologique (Horn *et al.*, 2008; Kerns *et al.*, 2005). La <u>pression atmosphérique</u> (Cryan & Brown, 2007; Kern *et al.*, 2005), le rayonnement lunaire (Baerwald & Barclay, 2011; Cryan *et al.*, 2014) et <u>l'hygrométrie</u> (Behr *et al.*, 2011) pourraient également influer sur l'activité chiroptérologique. Il semble toutefois plus vraisemblable que ces paramètres influent de manière concomitante sur l'activité des chiroptères (ce qui serait aussi le cas de la température) comme le montrent Behr *et al.*, (2011) ou sur l'abondance d'insectes (Corten & Veldkamp, 2001).

Le nombre de cadavres trouvés sous les éoliennes varie également en fonction de l'environnement immédiat du parc, de la configuration des aérogénérateurs (distance entre le mât et les structures arborées) et de leurs caractéristiques (hauteur du moyeu et longueur des pales).

4.3.1.1.3 Des comportements à risques de collision, facteurs de mortalité

Comme détaillé précédemment, la saisonnalité joue un rôle particulier dans le niveau d'activité des populations de chiroptères. Les plus forts taux de mortalité sont ainsi généralement recensés en fin d'été - début d'automne, ce qui sous-entend un lien entre mortalité et migration automnale.

Lors des **migrations**, les chauves-souris traversent des zones moins bien connues que leurs territoires de chasse et/ou n'émettent que peu ou pas d'émissions sonar lors de ces trajets, elles seraient ainsi moins à même de repérer les pales en mouvement (Bach, 2001 in Behr *et al.*, 2007 ; Johnson *et al.*, 2003).

Les comportements de chasse, de reproduction ou de swarming sont également des comportements à risque de collision. Horn *et al.* (2008) mettent ainsi en évidence une corrélation positive entre activité d'insectes et de chauves-souris dans les deux premières heures de la nuit.

En période de reproduction ou lors de recherches de gîtes de mise-bas ou de transit, les chiroptères arboricoles recherchent des cavités, des fissures et des décollements d'écorce où s'installer. La silhouette d'une éolienne pourrait ainsi être confondue avec celle d'un arbre en milieu ouvert (Cryan et al., 2014; Kunz et al., 2007), entrainant une exploration de l'ensemble de la structure par les chauves-souris et augmentant ainsi le risque de collision.

Enfin, à proximité des gîtes de mise-bas ou de lieux de swarming, des regroupements importants de chiroptères peuvent avoir lieu, résultant en une augmentation conséquente du nombre d'individus et de l'activité autour du site, ainsi qu'en un rassemblement d'individus volant autour des entrées. Cela implique nécessairement un risque accru de mortalité par collision.

La morphologie et les spécificités écologiques de certaines espèces semblent être un facteur important dans le risque de collision. Hull et Cawthen (2013) et Rydell *et al.* (2010) ont ainsi mis en évidence des similarités entre espèces sensibles à l'éolien telles que les noctules, les pipistrelles et les sérotines en Europe. Il s'agit d'espèces glaneuses de plein air aux ailes longues et effilées, adaptées à ce type de vol et utilisant des signaux à faible largeur de bande et à forte intensité. Rydell *et al.* (2010) ont conclu que 98 % des espèces victimes de mortalité par collision sont des espèces présentant ces caractéristiques morphologiques et écologiques.

4.3.1.1.4 Sensibilité et vulnérabilité des espèces

La sensibilité et la vulnérabilité sont regroupées sous la forme d'un seul coefficient pour les chiroptères. L'indice utilisé est ainsi la **note de risque**. Cette note, comprise entre 1 et 4, correspond au croisement entre le statut de conservation UICN national et le taux de mortalité en Europe. **Cet indice inclus ainsi la sensibilité et défini un risque pour les populations d'espèces.** Concernant les chiroptères, il n'existe effectivement pas d'évaluation des populations européennes ou nationales assez fiables, la vulnérabilité ne peut être définie avec précision d'où l'indice de risque utilisé.

		Statuts de	Statut	s Listes r	ouges	М	ortalit	é de D	URR pa	ar éolier	nes 2021**	
Nom	Nom	protection		(UICN)	J	0	1	2	3	4	% de	Note
vernaculaire	scientifique	Directive Habitats	Monde	Europe	France	o	1- 10	11- 50	51- 499	>500	mortalité européenne connue	de risque***
Rhinolophe de Mehely**	Rhinolophus mehelyi	Annexe II &	VU	VU	CR = 5		х				0,01	3*
Minioptère de Schreibers	Miniopterus schreibersii	Annexe II &	NT	NT	VU = 4			х			0,12	3*
Murin de Capaccini	Myotis capaccinii	Annexe II &	VU	VU	NT = 3	х					0	1,5
Rhinolophe euryale	Rhinolophus euryale	Annexe II &	NT	VU	LC = 2	х					0	1
Grand Rhinolophe	Rhinolophus ferrumequinum	Annexe II &	LC	NT	LC = 2		х				0,01	1,5*
Murin de Bechstein	Myotis bechsteinii	Annexe II &	NT	VU	NT = 3		х				0,01	2*
Petit Murin	Myotis blythii	Annexe II &	LC	NT	NT = 3		х				0,07	2*
Noctule de Leisler	Nyctalus leisleri	Annexe IV	LC	LC	NT = 3					х	6,7	3,5
Noctule commune	Nyctalus noctula	Annexe IV	LC	LC	VU = 4					х	14,6	4

		Statuts de	Statut	ts Listes r	ouges	М	ortalit	é de D	URR p	ar éolier	nes 2021**	
Nom	Nom	protection		(UICN)		0	1	2	3	4	% de	Note
vernaculaire	scientifique	Directive Habitats	Monde	Europe	France	0	1- 10	11- 50	51- 499	>500	mortalité européenne connue	de risque***
Pipistrelle de Nathusius	Pipistrellus nathusii	Annexe IV	LC	LC	NT = 3					х	15	3,5
Petit Rhinolophe	Rhinolophus hipposideros	Annexe II &	LC	NT	LC = 2	х					0	1
Molosse de Cestoni	Tadarida teniotis	Annexe IV	LC	LC	NT = 3				х		0,7	3
Barbastelle d'Europe	Barbastella barbastellus	Annexe II &	NT	VU	LC = 2		х				0,06	1,5*
Sérotine de Nilsson	Eptesicus nilssonii	Annexe IV	LC	LC	DD = 1			х			0,4	1,5
Sérotine commune	Eptesicus serotinus	Annexe IV	LC	LC	NT = 3				х		1,1	3
Vespère de Savi	Hypsugo savii	Annexe IV	LC	LC	LC = 2				Х		3,2	2,5
Murin d'Alcathoe	Myotis alcathoe	Annexe IV	DD	DD	LC = 2	х					0	1
Murin de Brandt	Myotis brandtii	Annexe IV	LC	LC	LC = 2		х				0,02	1,5
Murin de Daubenton	Myotis daubentonii	Annexe IV	LC	LC	LC = 2		х				0,09	1,5
Murin à oreilles échancrées	Myotis emarginatus	Annexe II &	LC	LC	LC = 2		х				0,05	1,5*
Grand Murin	Myotis myotis	Annexe II &	LC	LC	LC = 2		х				0,07	1,5*
Murin à moustaches	Myotis mystacinus	Annexe IV	LC	LC	LC = 2		х				0,05	1,5
Murin de Natterer	Myotis nattereri	Annexe IV	LC	LC	LC = 2		х				0,02	1,5
Pipistrelle de Kuhl	Pipistrellus kuhlii	Annexe IV	LC	LC	LC = 2				х		4,4	2,5
Pipistrelle commune	Pipistrellus pipistrellus	Annexe IV	LC	LC	NT = 3					х	22,6	3,5
Pipistrelle pygmée	Pipistrellus pygmaeus	Annexe IV	LC	LC	LC = 2				х		4,2	2,5
Oreillard roux	Plecotus auritus	Annexe IV	LC	LC	LC = 2		х				0,07	1,5
Oreillard gris	Plecotus austriacus	Annexe IV	LC	LC	LC = 2		Х				0,08	1,5
Murin d'Escalera	Myotis escalerai	NE	NE	/	VU = 4	х					0	2*
Grande Noctule	Nyctalus lasiopterus	Annexe IV	NT	DD	VU = 4			х			0,4	3*

		Statuts de	Statut	Statuts Listes rouges		М	ortalit	é de D	URR pa	ar éolier	nes 2021**	
Nom	Nom	protection		(UICN)		0	1	2	3	4	% de	Note
vernaculaire	scientifique	Directive Habitats	Monde	Europe	France	0	1- 10	11- 50	51- 499	>500	mortalité européenne connue	de risque***
Oreillard montagnard	Plecotus macrobullaris	Annexe IV	LC	NT	VU = 4	х					0	2
Sérotine bicolore	Vespertilio murinus	Annexe IV	LC	LC	DD = 1				х		2	2
Murin des marais**	Myotis dasycneme	Annexe II &	NT	NT	EN=5		х				0,02	3*

DD: Données insuffisantes

LC: Préoccupation mineure (espèce pour laquelle le risque de disparition de France est faible)

NT: Quasi menacée (espèce proche du seuil des espèces menacées ou qui pourrait être menacée

si des mesures de conservation spécifiques n'étaient pas prises)

VU : Vulnérable EN : En danger

CR: En danger critique d'extinction

NA : Non applicable (espèce non soumise à évaluation car introduite dans la période récente ou présente en métropole de manière occasionnelle ou marginale)

- * Arrêté du 23 avril 2007 fixant la liste des mammifères terrestres protégés sur l'ensemble du territoire et les modalités de leur protection
- ** Espèce faisant partie de la liste des vertébrés protégés menacés d'extinction et dont l'aire de répartition excède le territoire d'un département (Arrêté di 9 juillet 1999)
- *: surclassement possible localement pour les espèces forestières si implantation en forêt, et les espèces fortement grégaires (proximité d'importantes nurseries ou de sites d'hibernation majeurs)
- **Mortalité de DURR par éoliennes 2021 (Europe) : informations reçues au 07/05/2021 ***Note calculée par ENCIS sur la base de la SFEPM 2015 avec la mise à jour de la mortalité de DURR : mise à jour le 02/12/2021

Tableau 59 : Sensibilité et note de risque des chiroptères vis-à-vis des éoliennes

4.3.1.2 Bilan national et européen de la mortalité des chiroptères

3 106 cas de collision avec les éoliennes ont été recensés en France au 17 juin 2022 (Dürr, 2022). L'espèce la plus fortement impactée (environ 36 %) est de loin la Pipistrelle commune (cf. Annexe 4 et figure suivante). La Pipistrelle de Nathusius, la Pipistrelle de Kuhl et les Pipistrelles indéterminées sont retrouvées dans de plus faibles proportions (environ 7 à 10 % pour chaque espèce). Enfin, dans des proportions encore plus faibles, la Pipistrelle pygmée et la Noctule de Leisler (environ 6 %), la Noctule commune (environ 5 %), le Vespère de Savi (environ 2 %) et la Sérotine commune (environ 1 %) sont identifiées. Il est précisé qu'environ 14 % des chiroptères retrouvées restent indéterminés.

Au niveau européen, la Pipistrelle commune est aussi l'espèce la plus impactée, suivie par la Pipistrelle de Nathusius, la Noctule commune et les Pipistrelles indéterminées.

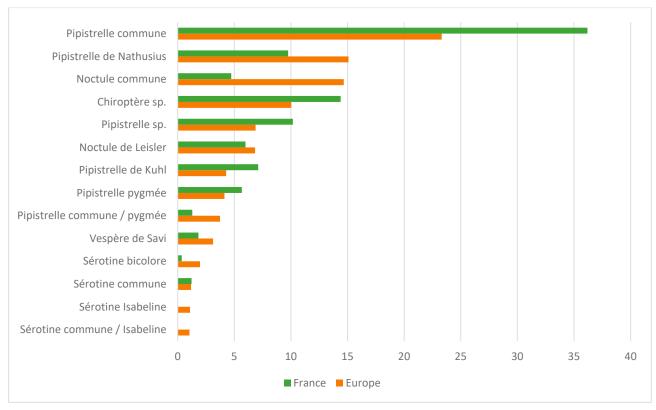


Figure 23 : Proportions des cas de collision avec les éoliennes en fonction des espèces, en France et en Europe (espèces représentant plus de 1% des cas de mortalité en Europe, d'après Dürr, 2022)

4.3.2 Bilan des connaissances de l'étude d'impact

L'étude d'impact, réalisée en 2005 par le bureau d'étude Tencia, a révélé la présence de trois espèces à enjeu et sensibles au risque de collision dont il conviendra de surveiller l'apparition d'éventuels cas de mortalité (figure suivante) :

- l'Oreillard sp.,
- la Pipistrelle commune,
- la Sérotine commune.

Figure 24 : Espèces à enjeu et sensibles au risque de collision, inventoriées durant l'étude d'impact réalisée en 2005 (Tencia)

4.3.3 Résultats globaux du suivi des chiroptères en 2022

4.3.3.1 Mortalité brute

Sur le parc de Pièces de Vignes, sept cadavres de chiroptères ont été retrouvés (figure suivante). Cela représente une mortalité brute de 1,4 individu / éolienne durant la période de suivi s'étalant de mimai à mi-octobre, soit 21 prospections. Cette mortalité brute est ainsi équivalente à 0,07 individu / éolienne / sortie.

L'espèce la plus retrouvée est la Noctule commune (cinq cadavres). Par ailleurs, deux autres espèces ont été recensées, à raison d'un individu pour chaque espèce.

Le tableau suivant synthétise les caractéristiques de chaque cadavre recensé durant le suivi.

Date	Espèce	Éolienne	Source	Statut	Sexe	Âge
16/08/2022	Noctule commune	E2	Protocole	Transit automnal et swarming	F	Adulte
16/08/2022	Pipistrelle de Kuhl	E3	Protocole Transit automnal et swarming		-	Adulte
30/08/2022	Noctule commune	E5	Protocole	Transit automnal et swarming	-	-
07/09/2022	Noctule commune	E4	Protocole	Transit automnal et swarming	-	-
07/09/2022	Noctule commune	E4	Protocole	Transit automnal et swarming	-	-
14/09/2022	Noctule commune	E4	Protocole	Transit automnal et swarming	-	-
13/10/2022	Pipistrelle commune	E1	Protocole	Transit automnal et swarming	-	-

Tableau 23 : Chiroptères découverts lors du suivi mortalité

Avec sept cadavres de chiroptères recensés, la mortalité brute observée sur le parc de Pièces de Vignes est de 1,4 individu / éolienne sur la période de suivi s'étalant de mi-mai à mi-octobre.

4.3.3.2 Mortalité estimée

Le tableau suivant compile les résultats de la mortalité estimée pour l'ensemble du parc éolien sur la période de suivi, selon les différentes méthodes retenues (estimations calculées via le logiciel EolApp du CEFE Montpellier, https://shiny.cefe.cnrs.fr/eolapp). L'intervalle de confiance à 95 % est également mentionné.

		Intervalle de			
Méthodes	Globale	/éolienne	/sortie	/éolienne/sortie	confiance à 95 % (mortalité globale)
Erickson	102,3	20,5	4,9	1,0	26,7 - 216,0
Huso	178,1	35,6	8,5	1,7	42,8 - 448,4
Jones	590,0	118,0	28,1	5,6	128,8 - 975,8

Tableau 18 : Estimations de la mortalité de l'avifaune pour l'ensemble du parc sur la période de suivi selon les méthodes utilisées

Selon les estimateurs, la mortalité estimée varie de 102 à 590 individus pour l'ensemble du parc sur la période de suivi, et la mortalité réelle devrait se situer entre 27 à 976 individus avec un risque d'erreur de 5 % (pour chaque estimateur).

La mortalité estimée est très éloignée de la mortalité brute (n = 7).

La précision des estimations est faible. Cependant, au moins 27 cadavres sont estimés sur la période de suivi.

Les paramètres correcteurs peuvent avoir un impact fort. C'est notamment le cas pour les valeurs correctives liées à la persistance des cadavres, qui reflète une forte prédation sur le parc de Pièces de Vignes. Ceci indique pourquoi la précision des estimations est peu élevée.

Dans les paragraphes suivant (résultats saisonniers et spatialisés), compte tenu du faible nombre de données et/ou de l'absence d'hypothèse biologique expliquant les variations constatées et/ou de la non-homogénéité du suivi (nombre de sortie, périodes couvertes, etc.), le calcul d'une mortalité estimée est susceptible de ne pas être pertinent ou réalisable. Le cas échéant, seule la mortalité brute est analysée.

4.3.3.3 Analyse taxonomique

Les sept cadavres de chiroptères trouvés correspondent à cinq Noctules communes, une Pipistrelle commune et une Pipistrelle de Kuhl. Il convient de considérer que cette mortalité observée n'est pas nécessairement représentative de la mortalité réelle par espèce.

La Pipistrelle commune fait partie des espèces les plus impactées en France et en Europe (cf. bilan national de la mortalité chiroptère). Cependant, la Noctule commune et la Pipistrelle de Kuhl sont, à

l'inverse, plus rarement découvertes. Une comparaison entre ces résultats doit cependant être étudiée avec prudence étant donné le faible nombre de données issues du parc de Pièces de Vignes.

La Pipistrelle commune découverte sur le parc de Pièce de Vigne est une espèce fréquemment concernée par des cas de mortalité. À l'inverse, la Noctule commune et la Pipistrelle de Kuhl représentent des cas inhabituels.

4.3.4 Résultats saisonniers

4.3.4.1 Mortalité brute

Au cours de ce suivi, les cadavres de chiroptères ont été retrouvés durant les mois d'août, de septembre et d'octobre (figure suivante).

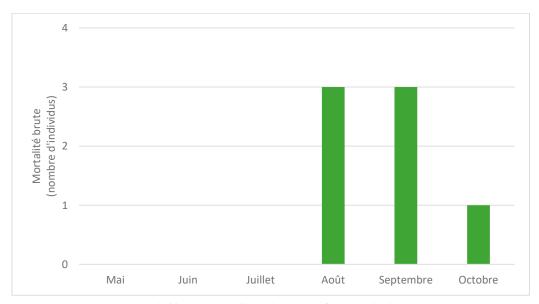


Figure 25 : Mortalité brute observée sur le parc en fonction de chaque mois suivi

La mortalité observée est la plus importante au mois d'août et de septembre. Compte tenu des caractéristiques des individus retrouvés (date, critères morphologiques), la période concernée correspond à celle du transit automnal et de swarming. Par ailleurs, une absence de mortalité est constatée durant les mois de mai à juillet, qui correspond la mise bas et l'élevage des jeunes.

La mortalité fluctue entre 1 et 3 individus sur les mois concernés. Malgré le faible nombre de données, la mortalité semble se concentrer sur la période du transit automnal et le swarming, qui concerne tous les individus retrouvés. Cette tendance est à modérer car de potentiels prélèvements de cadavres entre les prospections ont pu être réalisés. Par conséquent, il n'est pas impossible que d'autres périodes aient aussi été mortifères lors du suivi.

4.3.5 Résultats spatialisés par éolienne

4.3.5.1 Mortalité brute

Durant ce suivi, les sept cadavres de chiroptères ont été retrouvés sous toutes les éoliennes, soit sous les éoliennes E1, E2, E3, E4 et E5 (carte suivante).

Carte 5 : Répartition des cadavres de chiroptères trouvés par éolienne

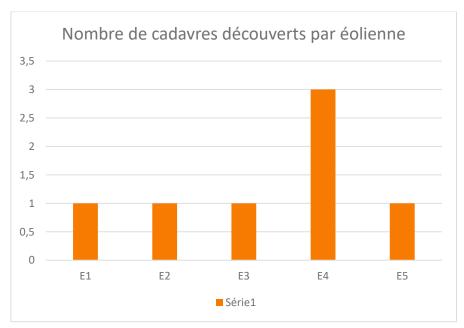


Figure 26 : Mortalité brute par éolienne sur l'ensemble de la période de suivi

L'éolienne E4 présente un nombre plus important de cadavres. Cette éolienne est la plus proche d'éléments boisés (bosquet au centre du parc). Les zones boisées sont souvent fréquentées par les chiroptères, ce qui pourrait expliquer une mortalité plus importante. Cependant, le faible nombre de données ne permet pas de conclure sur ce point.

4.3.6 Causes potentielles de la mortalité engendrée sur le parc éolien

Il existe de nombreux facteurs pouvant engendrer ou accroitre les risques de collision des chiroptères avec les turbines. Ceux-ci peuvent être liés à :

- l'espèce (sensibilité),
- la période (comportements à risque, abondance des individus, etc.),
- la localisation du parc et son agencement (présence de boisements, de haies, etc.),
- la météorologie (température, vent, etc.).

L'origine d'une collision est le plus souvent liée à un recoupement de plusieurs de ces facteurs. Il convient ainsi, lorsque cela est possible, de les identifier afin de déterminer les causes principales de la mortalité sur le parc éolien, et si cela est justifié, d'appliquer d'éventuelles mesures correctrices.

D'après les caractéristiques des individus retrouvés, ainsi que des analyses spatiales et saisonnières effectuées précédemment dans ce rapport, des causes récurrentes pourraient être à l'origine de la mortalité sur le parc de Pièces de Vignes.

La distribution saisonnière des cas de mortalité révèle une mortalité plus forte lors de la saison de transit automnal et de swarming. En outre, et étant donnée leur phénologie, les sept individus retrouvés durant cette période (cinq Noctules communes, une Pipistrelle commune et une Pipistrelle de Kuhl) semblent effectivement avoir été tués lors de leur déplacements. Compte tenu de ces éléments, le parc

éolien de Pièces de Vignes pourrait impacter particulièrement les chiroptères en transit automnal et en swarming. La mortalité sur cette période reste toutefois modérée et des suivis complémentaires seraient nécessaires pour vérifier cette hypothèse.

Par ailleurs, la proximité de l'éolienne E4 vis-à-vis d'un bosquet pourrait être en lien avec une mortalité plus importante à cet endroit. La différence de nombre d'individus reste toutefois faible, et des suivis complémentaires seraient également nécessaires pour vérifier cette hypothèse.

Les causes principales de la mortalité sur le parc pourraient être liées :

- à l'emplacement du parc sur un secteur ayant une forte activité des chiroptères en transit automnal et en swarming,
- à la présence d'un bosquet à proximité de l'éolienne E4.

4.3.7 Incidences spécifiques du parc éolien sur les chiroptères

4.3.7.1 Patrimonialité et risque pour les populations d'espèces

Le tableau suivant synthétise les statuts réglementaires et de conservation des espèces ayant été directement impactées par le parc de Pièces de Vignes, ainsi que leur sensibilité et leur vulnérabilité face au risque de collision avec les éoliennes.

	Statuts rég	glementaires	Statut de	Statut de		
Espèce	Directive Habitat- Faune-Flore	Mammifères protégés France	conservation national (UICN)	conservation régional (UICN)	Note de risque éolien	Effectifs
Noctule commune	Annexe IV	Article 2	VU	NT	4	5
Pipistrelle commune	Annexe IV	Article 2	NT	LC	3,5	1
Pipistrelle de Kuhl	Annexe IV	Article 2	LC	LC	2,5	1

LC : Préoccupation mineure / NT : Quasi menacée / VU : Vulnérable / EN : en danger / DD : Données insuffisantes / NA : Non applicable / NE : Non évalué

: Éléments de patrimonialité

Tableau 19 : Statuts des différentes espèces impactées et nombre de collision observées

Au regard des statuts de conservation correspondant aux individus découverts et le risque pour les espèces concernées face aux éoliennes, deux espèces sont à considérer avec vigilance sur le parc de Pièces de Vignes : la Noctule commune et la Pipistrelle commune.

La Noctule commune effectue des vols rectilignes très rapides (jusqu'à plus de 50 km/h) généralement situés entre 10 et 50 m de haut mais parfois à plusieurs centaines de mètres de hauteur. La Noctule commune est vulnérable face à l'éolien. L'état des populations est en fort déclin, avec une perte estimée en France métropolitaine de 88 % de la population entre 2006 et 2019 (Bas *et al.*, 2020).

La Pipistrelle commune peut évoluer à plus de 20 mètres de haut en forêt ou à proximité d'une lisière ou haie (Arthur et Lemaire, 2015, p. 400). Elle est plus généralement très opportuniste et peut adapter son mode de chasse selon l'environnement. Malgré un mode de chasse généralement proche du feuillage, elle fait partie des espèces présentant les plus forts taux de mortalité face aux éoliennes. En effet, il s'agit de l'espèce la plus impactée en Franc et eu Europe (Dürr, 2022). De plus, bien qu'il s'agisse de l'espèce la plus commune, les suivis montrent un lent effritement des populations et elle pourrait perdre sur le long terme sa place d'espèce la plus abondante en Europe (Arthur et Lemaire, 2015, p. 403). Lors du dernier Plan National d'Actions chiroptère 2009-2013, cette tendance d'évolution des populations à la baisse a été constatée (PNA Chiroptères – Bilan technique final, 2014). L'état des populations est en déclin, avec une perte estimée en France métropolitaine de 9 % de la population entre 2006 et 2019 (Bas et al., 2020).

Parmi les trois espèces découvertes, la Noctule commune présente un état de conservation défavorable à l'échelle nationale (VU) et régionale (NT), et la Pipistrelle commune présente également un état de conservation défavorable à l'échelle nationale (NT). Ces deux espèces présentent toutes les deux une note de risque élevée (3,5 et 4).

Pipistrelle Sérotine sp. Oreillard gris commune <1% <1% <1% Noctule commune Sérotine / Noctule sp. 64% <1% Pipistrelle de **Nathusius** Noctule de 1% Leisler 24% Pipistrelle de Kuhl **Pipistrelle** 5% commune 6%

4.3.7.2 Corrélation avec le suivi comportemental

Figure 6 : Répartition des contacts par espèces ou groupes d'espèces sur l'ensemble de la période d'étude

Il est intéressant de noter que l'activité chiroptérologique recensée sur le parc est essentiellement due à celle des Noctules communes (64 % des contacts). Les autres espèces contactées sont principalement la Noctule de Leisler (24 %), la Pipistrelle commune (6 %) et la Pipistrelle de Kuhl (5 %). À l'exception de la Noctule de Leisler, ces résultats confirment le panel d'espèces retrouvées sous les éoliennes du parc, à savoir des espèces de haut-vol. Néanmoins, en raison de la faiblesse de l'échantillon de cadavres retrouvés, il apparait difficile de mettre en exergue une véritable corrélation entre l'activité relevée par les enregistrements et la mortalité avérée.

Sur le parc de Pièces de Vignes, l'activité chiroptérologique est jugée comme non-négligeable. Elle est corrélée avec une mortalité estimée élevée.

4.3.7.3 Incidences sur les populations des espèces concernées

Parmi les espèces portant des enjeux élevés, ciblées lors de l'étude d'impact réalisée en 2014 (Oreillard sp., Pipistrelle commune et Sérotine commune), seule la Pipistrelle commune a fait l'objet d'un cas de mortalité observé.

La Noctule commune, classée « Vulnérable » au niveau national et « Quasi menacée » au niveau régional, a fait l'objet de cinq cas de mortalité recensé sur le parc de Pièces de Vignes en 2022. En tenant compte de ces paramètres, l'impact du parc peut être qualifié comme modéré et significatif. Compte tenu de la récurrence de la mortalité observée, il conviendra de mettre en place une programmation préventive des éoliennes adaptée et de surveiller si d'éventuels nouveaux cas surviennent en quantité inquiétante.

La Pipistrelle commune, classée « Quasi menacée » en période de reproduction à l'échelle nationale et présentant une note de risque élevée face à l'éolien, n'a fait l'objet que d'un seul cas de mortalité recensé sur le parc de Pièces de Vignes en 2022. Sans récurrence de la mortalité observée chez cette espèce, l'impact du parc peut être qualifié comme faible et non-significatif. Toutefois, il sera nécessaire de surveiller si d'éventuels nouveaux cas surviennent, afin de pouvoir éventuellement en limiter les causes.

La Pipistrelle de Kuhl, inscrite à l'Annexe IV de la Directive Habitat-Faune-Flore et protégée à l'échelle nationale, n'a fait l'objet que d'un seul cas de mortalité recensé sur le parc de Pièces de Vignes en 2022. Sans récurrence de la mortalité observée chez cette espèce, l'impact du parc peut être qualifié comme faible et non-significatif. Toutefois, il sera nécessaire de surveiller si d'éventuels nouveaux cas surviennent, afin de pouvoir éventuellement en limiter les causes.

Parmi les espèces à enjeu et risques élevés, ciblées lors de l'étude d'impact, la Pipistrelle commune a été recensée durant ce suivi. Un individu de Pipistrelle de Kuhl et cinq individus de Noctules communes ont aussi été découverts.

Compte tenu de la mortalité observée et des effectifs concernés, le parc de Pièces de Vignes présente, à l'heure actuelle, un impact significatif sur la Noctule commune en particulier. Il sera nécessaire de mettre en place une programmation préventive adaptée et de surveiller avec attention l'évolution des cas de mortalité sur la Noctule commune et la Pipistrelle commune durant les prochaines années de suivi.

4.3.8 Comparaisons avec des données de 2022 avec celles de 2015

4.3.8.1 Comparaison des résultats globaux

4.3.8.1.1 Mortalité brute

La comparaison de la mortalité sur le parc de Pièces de Vignes est basée sur les sorties effectuées en 2015 (Écosphère, 2016b) et de 2022. Sur ce parc, deux chiroptères ont été retrouvés en 2015 et sept en 2022 soit neuf individus au total (tableaux suivant). La mortalité brute en 2022 est plus élevée qu'en 2015. Cependant, les protocoles menés entre les deux années de suivi sont différents (nombre de passage, nombre d'éoliennes suivies, surface prospectée théorique par éolienne). Ainsi, l'évolution de la mortalité ne peut être appréciée ici.

L'espèce la plus impactée sur les deux années est la Noctule commune. Sur les deux espèces retrouvées en 2015, une seule est également recensée en 2022, la Noctule commune.

Espèce	Année	
	2015	2022
Noctule commune	1	5
Pipistrelle commune	0	1
Pipistrelle de Kuhl	0	1
Pipistrelle sp.	1	0

Le faible nombre de données récoltées sur les deux années suivies et les différences de protocoles ne permettent pas de dégager une tendance concernant l'évolution des cas de mortalité.

4.3.8.1.2 Mortalité estimée

Aucun calcul de mortalité estimée n'a été réalisé en 2015, il n'est donc pas possible de réaliser de comparaison.

4.3.8.1 Comparaison des résultats saisonniers

Les cadavres de chiroptères ont été retrouvés durant la même phase du cycle biologique, en transit automnal, dans le cas du suivi de 2015 et celui de 2022 (tableau suivant). Par ailleurs, le nombre de cas est inférieur en 2015. Cependant, les protocoles menés entre les deux années de suivi sont différents (nombre de passage, nombre d'éoliennes suivies, surface prospectée théorique par éolienne).

Année	Transit printanier	Mise-bas	Transit automnal
2015	0	0	2
2022	0	0	7

Tableau 20 : Mortalité brute sur l'ensemble du parc en fonction de la période biologique en 2017 et 2018

Le faible nombre de données récoltées sur les deux années suivies et les différences de protocoles ne permettent pas de dégager une tendance concernant l'évolution des cas de mortalité par saison.

4.3.8.1.1 Mortalité estimée

Aucun calcul de mortalité estimée n'a été réalisé en 2015, il n'est donc pas possible de réaliser de comparaison.

4.3.8.1 Comparaison des résultats spatialisés

4.3.8.1.1 Mortalité brute

Le faible nombre de données récoltées sur les deux années suivies et les différences de protocoles (seulement trois éoliennes suivies en 2015) ne permettent pas de réaliser de comparaison concernant l'évolution des cas de mortalité par éolienne.

Aucune comparaison n'a pu être réalisée concernant les résultats spatialisés entre les années 2015 et 2022.

4.3.9 Synthèse

- La mortalité brute relevée sur l'ensemble du suivi (mai à octobre 2022) est de sept individus (cinq Noctule commune, une Pipistrelle commune et une Pipistrelle de Kuhl).
- Selon les estimateurs, la mortalité estimée varie de 102 à 590 individus pour l'ensemble du parc sur la période de suivi, et la mortalité réelle devrait se situer entre 27 et 976 individus avec un risque d'erreur de 5 % (pour chaque estimateur).
- La mortalité des chiroptères sur le parc de Pièces de Vignes semble concentrée en fin d'été et à l'automne, soit durant la période de transit automnal et de swarming, une période de forte activité des chiroptères. L'emplacement du parc sur un secteur ayant une forte activité des chiroptères en transit automnal et en swarming pourrait être en lien avec les cas de mortalité recensés. Également, la proximité entre un bosquet et l'éolienne E4 pourrait être en lien avec une mortalité plus importante sur cette éolienne.
- Parmi les trois espèces découvertes, deux d'entre elles (Noctule commune et Pipistrelle commune) présentent une note de risque élevée face à l'éolien (3,5 et 4) et elles portent des statuts de conservation défavorables à l'échelle nationale et régionale.
- Parmi les espèces à enjeu et/ou sensibilité élevés, ciblées lors de l'étude d'impact, la Pipistrelle commune a été recensée durant ce suivi avec un individu découvert.
- Compte tenu de la mortalité observée et des effectifs concernés, le parc de Pièces de Vignes présente, à l'heure actuelle, un impact considéré comme modéré sur la Noctule commune, ainsi qu'un impact faible sur la Pipistrelle commune et la Pipistrelle de Kuhl. De plus, un minimum de 27 cadavres est estimé sur la période de suivi. En fonction des espèces concernées, cette mortalité pourrait représenter un impact significatif. Ainsi, il sera nécessaire de mettre en place une programmation préventive adaptée afin de limiter l'impact du parc sur les chiroptères, et notamment sur les espèces à enjeux précédemment citées. Il sera également nécessaire de surveiller avec attention l'apparition de nouveau cas de mortalité d'espèces à enjeu.

5.1.1.1 Mesures correctrices proposées pour réduire l'incidence sur les chiroptères

Les résultats du suivi de l'année 12 d'exploitation montrent une mortalité chiroptérologique significative et induisent la mise en place de mesure de réduction de cette dernière.

Mesure prise à la suite du suivi de l'année 12 d'exploitation (2022) pour l'année suivante (2023)

Programmation préventive des éoliennes en fonction de l'activité chiroptérologique

Cette mesure est détaillée ci-après :

Programmation préventive du fonctionnement de toutes les éoliennes sur toutes les phases biologiques

Type de mesure : Mesure de réduction.

Impact brut : Risque de collision par les chiroptères.

Objectif: Diminuer la mortalité directe sur les chiroptères.

Description de la mesure : Un protocole d'arrêt de toutes les éoliennes du parc sous certaines conditions (humidité, température et vitesse du vent), sera mis en place lors de toutes les phases du cycle biologique lors des prochaines années. Cet arrêt des pales, lorsque les conditions sont les plus favorables à l'activité des chiroptères, peut permettre de diminuer très fortement la probabilité de collision avec un impact minimal sur le rendement (Arnett *et al.*, 2009).

Paramètres utilisés pour la mise en place de la mesure correctrice

Période de l'année

Le premier critère d'arrêt est lié au cycle biologique des chiroptères. Ces derniers étant en phase d'hibernation entre la fin novembre et la mi-mars (en fonction des conditions climatiques), un arrêt des éoliennes n'est pas jugé nécessaire durant cette période. L'année 2022 a montré une activité plus importante en été et en automne (au mois de juillet et août particulièrement).

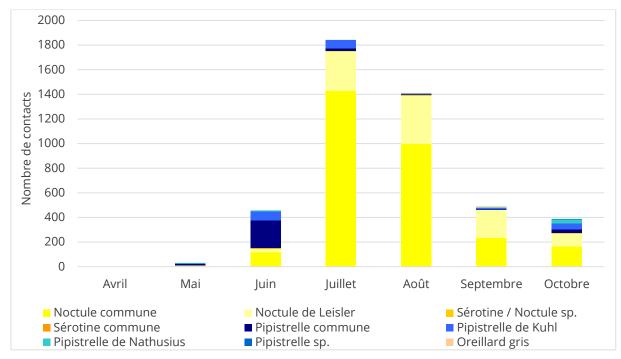


Figure 27 : Répartition du nombre de contacts par mois complet d'enregistrement

Ainsi les seuils de déclenchement seront choisis en corrélation avec l'activité et seront plus forts sur les saisons où se concentre la majorité de l'activité.

Horaires

Pour la phase d'activité, le premier critère utilisé correspond à la tranche horaire journalière. L'activité des chiroptères étant nocturne, les arrêts se feront seulement à l'intérieur de la phase comprise entre le coucher et le lever du soleil. À l'intérieur de cette phase, les études et connaissances bibliographiques montrent que l'activité se concentre durant les premières heures de la nuit, mais peut persister également durant la nuit à certaines périodes. Sur le site une large partie des contacts de chiroptères ont été enregistrés sur les trois premières heures de la nuit. Toutefois, on observe que des contacts sont disséminés sur l'entièreté de la nuit sur l'ensemble de la période d'étude.

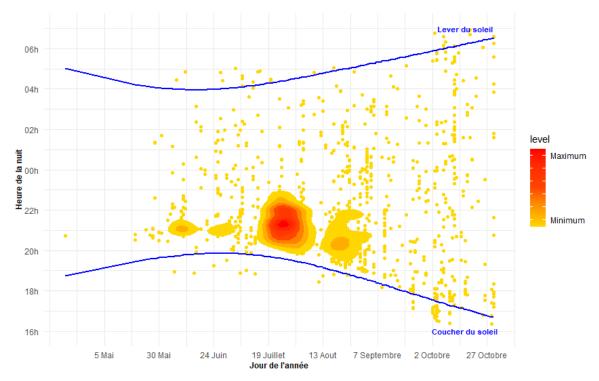


Figure 28 : Répartition de l'activité chiroptérologique en fonction du cycle circadien sur le site

Ainsi, les seuils de déclenchement seront choisis en fonction de l'activité par nuit mesurée sur le site. Les périodes qui comprennent le plus de contacts et une activité chiroptérologique répartie sur l'ensemble de la nuit seront privilégiées pour la mesure d'arrêt machine.

Vitesses de vent

Les connaissances bibliographiques et les retours d'études montrent une corrélation entre l'activité chiroptérologique et la vitesse du vent. Plus le vent est fort, plus l'activité chiroptérologique est faible.

Les inventaires sur site ont montré que les chiroptères ont volé majoritairement sous les 8 m/s avec 92,6 % de l'activité sous cette valeur. Ce seuil est cependant considéré comme haut, les noctules qui supportent bien les fortes vitesses de vent et qui sont bien présentes sur le site en sont à l'origine. Un certain nombre de contacts est par ailleurs enregistré jusqu'à 13 m/s. La plupart des périodes sont concernées par ces fortes valeurs de vents.

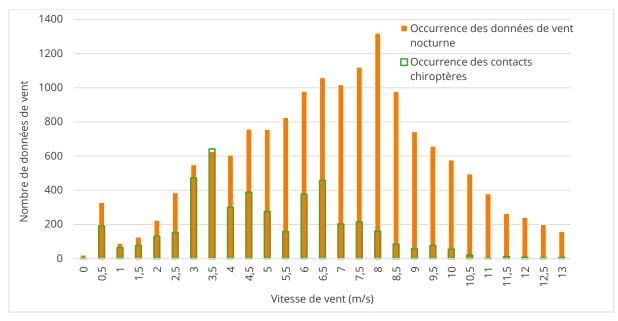


Figure 29 : Activité des chiroptères en fonction de la vitesse du vent pendant l'année de suivi

Les seuils de déclenchement tiendront comptes des capacités des chiroptères sur le site à évoluer sous des valeurs de vents allant jusqu'à 13 m/s. Un seuil de 92,6 % est atteint à 8 m/s mais les chiroptères peuvent voler sous de plus fortes valeurs.

Température

En ce qui concerne la température, son effet sur l'activité chiroptérologique est moins évident. Nos retours d'expériences montrent en effet que la corrélation entre activité chiroptérologique et température peut varier grandement en fonction des conditions locales et des années, les animaux pouvant être actifs par temps frais si la nourriture vient à manquer par exemple.

Le paramètre température est important pour l'activité des chiroptères selon MARTIN & *al.,* (2017). Les seuils définis dans le plan de programmation sont relativement conservateurs. MARTIN & *al.,* (2017) préconisent notamment un seuil de 9,5 °C pour les saisons fraiches (début du printemps et automne).

Sur le site, une majorité du nombre total de cris est obtenue pour des températures supérieures à 17 °C. On observe que l'activité peut débuter dès 14 °C.

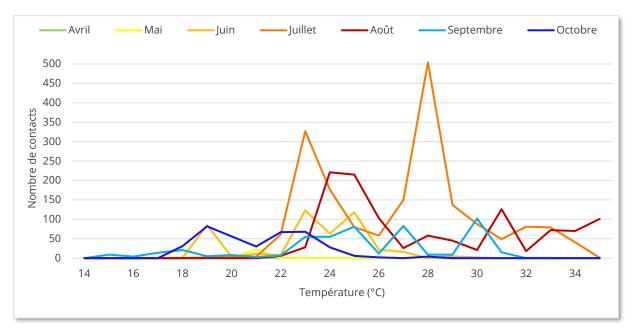


Figure 30 : Activité des chiroptères en fonction de la température pendant l'année de suivi

Un seuil minimal de 14 °C est retenu pour les mois les plus froids et un seuil de 18 °C est proposé pour le reste de la période d'activité des chiroptères, conformément à la bibliographie et aux résultats sur site.

Présentation de la mesure pour toutes les éoliennes :

La définition de ces critères est fondée sur les inventaires réalisés en nacelle, qui viennent corroborer pour la plupart l'analyse bibliographique. On notera que la période la plus restrictive pour la rotation des pales correspond à la période estivale de mise-bas et d'élevage des jeunes. Les inventaires ont effectivement montré une présence plus marquée des chiroptères lors de cette phase biologique.

Les critères retenus sont présentés dans le tableau suivant. Notons que dans le tableau est affiché le pourcentage de l'activité chiroptérologique couvert par la mesure pour chaque mois d'inventaire et finalement pour l'ensemble de la période étudiée (15 mars au 15 novembre).

Rappelons que l'arrêt est effectif lorsque les paramètres ci-après sont concomitants. La mesure est valable du 1^{er} mai au 31 octobre inclus d'une année calendaire.

Périodes		Mois	Contacts par mois	Pourcentage d'activité des chiroptères couvert par les critères suivants	Modalités d'arrêt			Modalités de redémarrage			
		Mars	-	-							
		Avril	1	0 %							
	Phase printanière Phase estivale	Mai	31	71,0 %	Du coucher au lever du soleil	Vitesse de vent (à hauteur de moyeu) inférieure à 6,5 m/s		Température de l'air inférieur à 18°C			
		Juin	460	92,8 %		Vitesse de vent (à hauteur de moyeu) inférieur à 7,5 m/s	- Pluie -	hauteur de moyeu) nférieur à	Température de l'air inférieur à 18°C		
Cycle actif des		Juillet	1 845	91,1 %		Vitesse de vent (à hauteur de moyeu) inférieur à 8 m/s		Température de l'air inférieur à 21°C			
chiroptères		Aout	1 408	91,3 %		Vitesse de vent (à hauteur de moyeu) inférieur à 8 m/s Vitesse de vent (à hauteur de moyeu) inférieur à 7,5 m/s		Température de l'air inférieur à 22°C			
		Septembre	492	89,8 %			Température de l'air inférieur à 16°C				
	Phase automnale	Octobre	389	88,2 %		Vitesse de vent (à hauteur de moyeu) inférieur à 7,5 m/s		Température de l'air inférieur à 17°C			
		Novembre	-	-							
	ériode inventor u 15 novembre)		4 626	90,8 %							

Modalités de suivi de la mesure : Suivi de mortalité et de comportement acoustique en nacelle. **Responsable :** Maître d'ouvrage / Écologue.

5.1.1.1.2 Poursuite et renforcement du suivi mortalité

Pour la période suivie en 2022 (avril à octobre), un minimum de 22 cadavres d'oiseaux et 27 cadavres de chiroptères sont estimés, soit 49 cadavres au total. Par ailleurs, l'impact de ces cas de mortalité est jugé significatif pour la Noctule commune. Les cas de mortalité recensés s'étendent du 27 juillet au 27 octobre pour l'avifaune, et du 16 août au 13 octobre pour les chiroptères. Afin de suivre l'évolution des cas de mortalité et de préciser les espèces potentiellement impactées, il est recommandé de poursuivre le suivi mortalité en 2023, avec un renforcement en période de migration postnuptiale pour l'avifaune et en période de transit automnaux et swarming pour les chiroptères. La pression d'inventaire préconisée correspond ainsi à :

- Un passage par semaine du 1^{er} avril au 14 juillet;
- Deux passages par semaine du 15 juillet au 15 novembre.

Table des illustrations

Figures

Figure 1 : Réactions des oiseaux en vol confrontés à un champs d'éoliennes sur leur trajectoire (d'après Al 2001)	
Figure 2 : Tendances des populations pour six espèces de chauves-souris en France entre 2006 et 2018 2020)	(Bas et al.
Figure 3 : Diminution de l'activité de la Sérotine commune sur le parc éolien de Midlum (Bach and Rahme Figure 4 : Ration du temps passé en hauteur pour chaque espèce de chiroptères (Adapté de Roemer et al Figure 5 : Représentation schématique des comportements de vols de chauves-souris à proximité d'un	el 2004) 20 I., 2017).22 e éolienne
Figure 6 : Effet de différents paramètres sur l'activité des chiroptères mesurée en nacelle d'éolienne (sur 69	
dans 35 sites dans 5 différentes régions naturelles en Allemagne en 2008) (Behr et al., 2017)	26
Figure 7 : Modèles d'activité nocturne de plusieurs espèces de chiroptères tout au long de la saison par r coucher du soleil (Newson et al., 2015)	
Figure 8 : Nombre de mortalités de chauves-souris par éolienne et par an en fonction de la garde au diamètre de rotor (Traduit de Dürr 2019, SFEPM 2020)	ı sol et du
Figure 9 : Contours isolignes des déclins de population projetés après 50 ans de croissance simulée	avec une
mortalité proportionnelle des chauves-souris cendrées causées par les éoliennes selon des combinaisons	s de tailles
de population initiales possibles (Ni) et de taux de croissance de population (λ) (Frick et al., 2017)	31
Figure 10 : Dispositif installé dans la nacelle d'éolienne (copyright : B.A.T.)	36
Figure 11 : Indices de confiance établis par Sonochiro® et risques d'erreurs associés	
Figure 12 : Schéma du parcours théorique au pied d'une éolienne	43
Figure 13 : Répartition des contacts par espèces ou groupes d'espèces sur l'ensemble de la période d'étuc	de 55
Figure 14 : Répartition du nombre de contacts par jours durant l'ensemble de la période d'inventaire	58
Figure 15 : Répartition de l'activité chiroptérologique en fonction du cycle circadien	59
Figure 16 : Activité des chiroptères en fonction de la température	61
Figure 17 : Activité des chiroptères en fonction de la vitesse du vent	
Figure 18 : Activité mensuelle des chiroptères en fonction du vent	63
Figure 19 : Proportions (%) des cas de collision avec les éoliennes en fonction des ordres, en France et (d'après Dürr, 2022)	en Europe
Figure 20 : Espèce à enjeu européens et notables, inventoriées durant l'étude d'impact réalisée en 2005 (1	
Figure 21 : Mortalité brute observée sur le parc en fonction de chaque mois suivi	
Figure 22 : Mortalité brute par éolienne sur l'ensemble de la période de suivi	
Figure 23 : Proportions des cas de collision avec les éoliennes en fonction des espèces, en France et	
(espèces représentant plus de 1% des cas de mortalité en Europe, d'après Dürr, 2022)	
Figure 24 : Espèces à enjeu et sensibles au risque de collision, inventoriées durant l'étude d'impact réalisé	
(Tencia)	
Figure 25 : Mortalité brute observée sur le parc en fonction de chaque mois suivi	
Figure 26 : Mortalité brute par éolienne sur l'ensemble de la période de suivi	
Figure 27 : Répartition du nombre de contacts par mois complet d'enregistrement	
Figure 28 : Répartition de l'activité chiroptérologique en fonction du cycle circadien sur le site	

Figure 29 : Activité des chiroptères en fonction de la vitesse du vent pendant l'année de suivi	107
Figure 30 : Activité des chiroptères en fonction de la température pendant l'année de suivi	108
T 11	
Tableaux	
Tableau 1 : Valeurs seuils des échelles d'activité globale en fonction des différents protocoles	
Tableau 2 : Valeurs seuils des échelles de diversité spécifique en fonction des différents protocoles	
Tableau 3 : Habitat et type de milieu inventorié	
Tableau 4 : Calendrier et paramètres du suivi en nacelle	
Tableau 5 : Paramètres des tests de d'efficacité effectués sur l'année de suivi	
Tableau 6 : Postulats de chaque méthode d'estimation	
Tableau 7 : Répartition du nombre de contacts par espèce et par éolienne	
Tableau 8 : Répartition du nombre de contacts au sol et en hauteur en fonction des phases biologiques	
Tableau 9 : Répartition du nombre de contacts en fonction des mois d'inventaires	
Tableau 10 : Résultats des tests d'efficacité	
Tableau 11 : Synthèse des surfaces prospectées et des facteurs de correction surfacique associés	69
Tableau 12 : Cause de mortalité des oiseaux (Guide de l'étude d'impact des parcs éoliens 2010, d'après les do	
issues de la LPO, AMBE)	71
Tableau 13 : Oiseaux découverts lors du suivi mortalité	75
Tableau 14 : Estimations de la mortalité de l'avifaune pour l'ensemble du parc sur la période de suivi se	
méthodes utilisées	76
Tableau 15 : Statuts des différentes espèces impactées et nombre de collision observées	
Tableau 16 : Mortalité brute observée par espèce sur le parc en 2015 et 2022	83
Tableau 17 : Mortalité brute sur l'ensemble du parc en fonction de la phase biologique en 2015 et 2022	84
Tableau 18 : Estimations de la mortalité de l'avifaune pour l'ensemble du parc sur la période de suivi se	on les
méthodes utilisées	93
Tableau 19 : Statuts des différentes espèces impactées et nombre de collision observées	97
Tableau 20 : Mortalité brute sur l'ensemble du parc en fonction de la période biologique en 2017 et 2018	100
Cartes	
Carte 1 : Localisation du parc éolien de Pièce de Vignes	7
Carte 2 : Localisation du parc éolien de Pièce de Vignes sur photographie aérienne	
Carte 3 : Localisation du dispositif Batmode S	
Carte 4 : Répartition des cadavres d'oiseaux trouvés par éolienne	
Carte 5 : Répartition des cadavres de chiroptères trouvés par éolienne	
Carte 5 . Repartition des cadavres de chiropteres trouves par eolienne	53

Photographie

Bibliographie

- Actes du séminaire citoyen Lucéole (2012). Coexistence Milan royal et parc éolien pour une compréhension ouverte d'un problème complexe.
- Albouy, S., Dubois, Y. & Picq, H. 2001. Suivi ornithologique des parcs éoliens du plateau de Garrigue-Haute (Aude). Rapport final, octobre 2001. ABIES/LPO Aude/ADEME, Gardouch Gruissan. 56 p + annexes.
- Alcalde, J.T. (2003): Impacto de los parques eólicos sobre las poblaciónes de murciélagos. Barbastella 2: 3-6.
- Ahlén, I. (1997): Migratory behaviour of bats at south Swedish coasts. Zeitschrift für Säugetierkunde 62: 375-380.
- Ahlén, I. (2002): Fladdermöss och fåglar dödade av vindkraftverk. Fauna och Flora 97 (3): 14-22.
- Alhen I Bach L. Baagoe H.J. & Pettersson J. 2007. Bats and offshore wind turbines studied in southern Scandinavia. The Swedish Environmental Protection Agency, Report 5571.
- Amorim F. Rebelo H. Rodrigues L. 2012. Factors influencing bat activity and mortality at a wind farm in the Mediterranean region. Acta Chiropterologica 14(2): 439-457.
- André, Y. (2005): Protocoles de suivis pour l'étude des impacts d'un parc éolien sur l'avifaune. LPO, Rochefort, 21 pages.
- Arnett, E.B., technical editor (2005): Relationships between Bats and Wind Turbines in Pennsylvania and West Virginia: an Assessment of Fatality Search Protocols, Pattern of Fatality, and Behavioral Interactions with Wind Turbines. A final report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USA. 187 pp.
- Arnett E.B. Barclay R.M.R & Hein C.D. 2013a. Thresholds for bats killed by wind turbines. Frontiers in Ecology and the Environment 11: 171–171. doi:10.1890/15409295-11.4.171 & 2013a.
- Arnett E.B. Huso M.M.P. Reynolds D.S. & Schirmacher M. 2007. Patterns of preconstruction bat activity at a proposed wind facility in northwest Massachusetts. An annual report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USA. 35 p.
- Arnett, E.B., M.M.P. Huso, J.P. Hayes & M. Schirmacher (2010): Effectiveness of changing wind turbine cutin speed to reduce bat fatalities at wind facilities. A final report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International, Austin, Texas, USA.
- Arnett E.B. Huso M.M.P. Schirmacher M.& Hayes J.P. 2011. Altering turbine speed reduces bat mortality at wind-energy facilities. Front Ecol. Environ. 2011, 9(4): 209–214.
- Arnett, E.B., G.D. Johnson, W.P. Erickson & C.D. Hein (2013c): A synthesis of operational mitigation studies to reduce bat fatalities at wind energy facilities in North America. A report submitted to the National Renewable Energy Laboratory. Bat Conservation International. Austin, Texas, USA.
- Arnett, E.B., C.D. Hein, M.R. Schirmacher, M.M.P. Huso & J.M. Szewczak (2013b): Evaluating the Effectiveness of an Ultrasonic Acoustic Deterrent for Reducing Bat Fatalities at Wind Turbines. PLoS ONE 8(6): e65794.

- Arnett E.B. Brown W.K. Erickson W.P. Fiedler J. Hamilton B.L. Henry T.H. Jain A. Johnson G.D. Kerns J. Koford R.R. Nicholson C.P. O'Connell T. Piorkowski M. & Ta,kersley R. 2008. Patterns of fatality of bats at wind energy facilities in North America. Journal of Wildlife Management 72: in press.
- Arnett, E.B., Baerwald, E.F., Mathews, F., Rodrigues, L., Rodriguez-Durán, A., Rydell, J., Villegas-Patraca, R. & Voigt, C. (2016) Impacts of wind energy development on bats: a global perspective. Bats in the Anthropocene: conservation of bats in a changing world (C. Voigt and T. Kingston, eds.) pp. 295–323. Springer International Publishing AG, Cham, Switzerland.
- Arthur L. & Lemaire M. 2015. Les Chauves-souris de France, Belgique, Luxembourg et Suisse. Deuxième édition. Muséum national d'Histoire naturelle, Paris ; Biotope, Mèze, 544 p. (Hors collection ; 38).
- Aulagnier S. 2005. France. in: R. Hutterer, T. Ivanova, C. Meyer-Cords & L. Rodrigues: Bat migrations in Europe. A review of banding data and literature. Natursch. Biol. Vielf., 28: 41-43.
- AVES environnement & GCP. 2010. Etude de la mortalité des Chiroptères. Parc éolien du Mas de Leuze, commune de Saint-Martin-de-Crau (13), 17/03-27/11 2009. 38 p.
- Bach, L. (2002): Auswirkungen von Windenergieanlagen auf das Verhalten und die Raumnutzungen von Fledermäusen am Beispiel des Windparks "Hohe Geest", Midlum Endbericht. unpubl. report for Instituts für angewandte Biologie, Freiburg/Niederelbe: 46 pp.
- Bach L. & Niermann I. 2011 & 2013. Monitoring der Fledermausaktivität im Windpark Langwedel Bericht 2012 Überprüfung des Abschalt algorithmus. Unpubl.report to PNE Wind AG, 28 pages.
- Bach, P., L. Bach, K. Eckschmitt, K. Frey & U. Gerhardt (2013b): Bat fatalities at different wind facilities in northwest Germany. Poster at CWE2013, Stockholm, 5-7 February 2013 (Naturvardsverket rapport 6546:117) and 3rd International Bat Meeting, Berlin, 1-3 March 2013.
- Baerwald E.F. Barclay R.M.R. 2011. Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. The Journal of Wildlife Management 75: 1103-1114.
- Baerwald, E.F., G.H. D'Amours, B.J. Klug & R.M.R. Barclay (2008): Barotrauma is a significant cause of bat fatalities at wind turbines. Current Biology 18 (16): pR 695696.
- Barataud M. & Giosa S. 2012. Biodiversité des chiroptères et gestions forestières en Limousin : rapport. Groupe Mamm. Herpéto. Limousin, Limoges, 32 p.
- Barclay R.M.R. 1991. Population Structure of Temperate Zone Insectivorous Bats in Relation to Foraging Behaviour and Energy Demand. Journal of Animal Ecology 60 (1): 165-178.
- Barclay RMR, Baerwald EF, Gruver JC (2007). Variation in bat and bird fatalities at wind energy facilities: assessing the effects of rotor size and tower height.
- Barre, K., L., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou, C. (2018) Estimating habitat loss due to wind turbine avoidance by bats: implications for European siting guidance. Biological Conservation, 226, 205–214.
- Barrios L *et al.* (2004). Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines.
- Bas, Y., A. Haquart, J. Tranchard & H. Lagrange (2014): Suivi annuel continu de l'activité des chiroptères sur 10 mâts de mesure: évaluation des facteurs de risque lié à l'éolien. Symbioses, Actes des 14èmes Rencontres Nationales Chauves-souris de la SFEPM, Bourges mars 2012, 32: 83-87.
- Bastos, R., M. Santos & J.A. Cabral (2013): A new stochastic dynamic tool to improve the accuracy of mortality estimates for bats killed at wind farms. Ecological Indicators, 34: 428–440.

- Bauer K. 1960. Die Säugetiere des Neusiedlersee-Gebietes (Österreich), Bonn. Zool. Beitr. 11(2-4): 141-344.
- Behr, O. & O. von Helversen (2005): Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark "Roßkopf" (Freiburg i. Br.). Unpubl. report: 37 pp + maps.
- Behr, O. & O. von Helversen (2006): Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen Wirkungskontrolle zum Windpark "Roßkopf" (Freiburg i. Br.) im Jahre 2005. Unpubl. report for 2005 on behalf of Regiowind GmbH & Co. KG Freiburg, 32 pages + maps.
- Behr O. Brinkmann R. Niermann I. & Korner-Nievergelt F. 2011. Akustische Erfassung der Fledermausaktivität an Windenergieanlagen. In: Brinkmann, R., Behr, O., Niermann, I. & M. Reich, (Hrsg.): Entwicklung
- Bernardino J., R. Bispo, H. Costa & M. Mascarenhas (2013): Estimating bird and bat fatalities at wind farms: a practical overview of estimators, their assumptions and limitations. New Zealand Journal of Zoology 40 (1): 63-74.
- Bernardino, J., R. Bispo, R. Rebelo, M. Mascarenhas & H. Costa (2011): Enhancing carcass removal trials at three wind energy facilities in Portugal. Wildl. Biol. Pract. 7(2): 1-14.
- Beucher, Y., V. Kelm, F. Albespy, M. Geyelin, L. Nazon & D. Pick (2013): Parc éolien de Castelnau-Pegayrols (12): Suivi pluriannuel des impacts sur les chauves-souris. Bilan des campagnes des 2ème, 3ème et 4ème années d'exploitation (2009-2001), 111 pages
- Bispo, R., G. Palminha, J. Bernardino, T. Marques, & D. Pestana (2010): A new statistical method and a web-based application for the evaluation of the scavenging removal correction factor. Proceedings of the VIII Wind Wildlife Research Meeting, Denver, USA.
- Brinkmann, R., H. Schauer-Weisshahn & F. Bontadina (2006): Survey of possible operational impacts on bats by wind facilities in Southern Germany. Final report submitted by the Administrative District of Freiburg, Department of Conservation and Landscape management and supported by the foundation Naturschutzfonds
- Brinkmann, R., O. Behr, I. Niermann & M. Reich (ed.) (2011): Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen. Umwelt und Raum 4, 457 pages
- Camina, A. (2012): Bat fatalities at wind farms in northern Spain lessons to be learned. Acta Chiropterologica 14(1): 205-212
- Collins J. & Jones G. 2009. Differences in bat activity in relation to bat detector height: implications for bat surveys at proposed windfarm sites. Acta Chiropterol., 11(2): 343-350.
- Cornelis N, Strehler-Perrin C, Balsiger L et al. (2016). Évaluation des impacts résiduels cumulés des éoliennes du Jura vaudois et des régions limitrophes sur la faune ailée.
- Cornut, J. & S. Vincent (2010a): Suivi de la mortalité des chiroptères sur deux parcs éoliens du sud de la région Rhône-Alpes. GCRA & LPO Drôme, 42 pages
- Cornut, J. & S. Vincent (2010b): Suivi de la mortalité de chiroptères sur deux parcs éoliens du sud de la région Rhône-Alpes. Le Bièvre 24: 51-57. Disponible sur : http://coraregion.free.fr/images/bievre/bievre24.pdf

- Cryan P.M. Gorrensen P.M. Hein C.D. Schirmacher M.R. Diehl R.H.Huso M.M. Hayman D.T.S. Fricker P.D. Bonaccorso F.J. Johnson D.H. Hesit. H. & Dalton D.C. 2014. Behavior of bats at wind turbines. PNAS. doi: 10.1073/pnas.1406672111
- De Lucas M et al., (2008). Collision fatality of raptors in wind farms does not depend on raptor abundance.
- Dechmann, D.K.N., Wikelski, M., Ellis-Soto, D., Safi, K. & O'Mara, M.T. (2017) Determinants of spring migration departure decision in a bat. Biology letters, 13, 20170395.
- DGPR, DGALN, MTES, MNHN, LPO, SFEPM, SER, FEE. Protocole de suivi environnemental des parcs éoliens terrestres, révision 2018.
- Dietz C. Von Helversen O. & Nill D. 2009. L'encyclopédie des chauves-souris d'Europe et d'Afrique du Nord : Biologie, caractéristiques, protection. Delachaux et Niestlé, Paris, France. 400 p.
- Drewitt AL et al. (2006). Assessing the impacts of wind farms on birds. (p14).
- Dubourg-Savage M.-J., Bach L. & Rodriges L., 2009, Bat mortality in wind farms in Europe. 1st International Symposium on Bat Migration, Berlin, pp.16-18
- Dubourg-Savage, M.J., L. Rodrigues, H. Santos, P. Georgiakakis, E. Papadatou, L. Bach & J. Rydell (2011): Pattern of bat fatalities at wind turbines in Europe: comparing north and south. Conference on Wind energy and Wildlife impacts, 2-5 May 2011, Trondheim, Norway, NINA Report 693. Proceedings, poster abstract: 124
- Dulac, P. (2008): Évaluation de l'impact du parc éolien de Bouin (Vendée) sur l'avifaune et les chauvessouris. Bilan de 5 années de suivi. Ligue pour la Protection des Oiseaux délégation Vendée/ADEME Pays de la Loire/Conseil Régional des Pays de la Loire, La Roche-sur-Yon, Nantes, 106 pages
- Dürr, T. (2001): Fledermäuse als Opfer von Windkraftanlagen. Naturschutz und Landschaftspflege in Brandenburg 10: 182.
- Dürr, T. 2007. Möglichkeiten zur Reduzierung von Fledermausverlusten an Windenergieanlagen in Brandenburg. Nyctalus (N.F.) 12 (2-3): 238-252
- Dürr, T. & L. Bach (2004): Fledermäuse als Schlagopfer von Windenergieanlagen Stand der Erfahrungen mit Einblick in die bundesweite Fundkartei. Bremer Beiträge für Naturkunde und Naturschutz Band 7: 253-264
- Écosphère, (2016a). Impact de l'activité éolienne sur les populations de chiroptères : enjeux et solutions » (Écosphère, 2016, complété en 2017).
- Écosphère, (2016b). Suivi de la mortalité et de la fréquentation des chiroptères et des oiseaux sur le parc éolien de Pièce de Vignes (36). Étude réalisée pour le compte d'EDPR. 114 p.
- Écosphère, Roue S, Thauront M, Jung, 2013. Suivis de mortalité : Protocoles, abaques, optimisation des fréquences de passage et collecte nationale de données.
- Endl, P., U. Engelhart, K. Seiche, S. Teufert & H. Trapp (2005): Untersuchungen zum Verhalten von Fledermäusen und Vögeln an ausgewählten Windkraftanlagen im Landkreis Bautzen, Kamenz, Löbau-Zittau, Niederschlesischer Oberlausitzkreis, Stadt Görlitz Freistaat Sachsen. Unpubl. report for Staatliches Umweltfachamt Bautzen: 135 pp.
- Erickson, W. P. et al. 2004. Stateline wind project wildlife monitoring final report, July 2001 December 2003. Tech. Rep. peer-reviewed by and submitted to FPL Energy, the Oregon Energy Facility Siting Council, and the Stateline Technical Advisory Committee.

- Erickson et al. 2011. Avian and bat mortality associated with the Vansycle Wind Project, Umatilla County, Oregon: 1999 study year.WEST, Inc. for Umatilla County Department of Resource Services and Development, Pendleton, Oregon. 21 p.
- Erickson WP, Johnson GD, Strickland DM, Young DP Jr., Sernka KJ, Good RE (2001). Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States.
- Erickson WP, Johnson GD, Young DP Jr. (2005). A Summary and Comparison of Bird Mortality from Anthropogenic Causes with an Emphasis on Collisions.
- Erkert H.G. 1982. Ecological aspects of bat activity rhythms, p. 201-242. In: T.H. Kunz (Ed.). Ecology of bats.New York, Plenum Press, XVIII+425p.
- Fielding AH et al. (2006). Spatial association as an indicator of the potential for future interactions between wind energy developments and golden eagles Aquila chrysaetos in Scotland.
- Frick, W.F., Baerwald, E.F., Pollock, J.F., Barclay, R.M.R., Szymanski, J.A., Weller, T.J., Russell, A.L., Loeb, S.C., Medellin, R.A. & McGuire, L.P. (2017) Fatalities at wind turbines may threaten population viability of a migratory bat. Biological Conservation, 209, 172–177.
- Fure, A. (2006): Bats and lighting. The London Naturalist 85: 1-20.
- Garcia DA, Canavero G, Ardenghi F, Zambon M (2015). Analysis of wind farm effects on the surrounding environment: Assessing population trends of breeding passerines.
- Gelman, A. and Pardoe, I. 2006. Bayesian measures of explained variance and pooling in multilevel (hierarchical) models. Techno metrics 48: 241–251.
- Georgiakakis, P. Kret E. Cárcamo B. Doutau B. Kafkaletou-Diez A. Vasilakis D. & Papadatou E. 2012. Bat fatalities at wind farms in north-eastern Greece. Acta Chiropterologica 14 (2): 459-468.
- Gerell-Lundberg K. & Gerell R.1994. The mating behaviour of the pipistrelle and the Nathusius' pipistrelle (Chiroptera) A comparison. Folia Zoologica 43 (4): 315-324.
- Grindal, S.D. & R.M. Brigham (1998): Short-term effects of small-scale habitat disturbance on activity by insectivorous bats. J. Wildl. Manage 62 (3): 996–1003.
- Grodsky, S.M., M.J. Behr, A. Gendler, D. Drake, B.D. Dieterle, R.J. Rudd & N.L. Walrath (2011): Investigating the causes of death for wind turbine-associated bat fatalities. Journal of Mammalogy 92(5): 917–925.
- Groupe Chiroptères de la SFEPM, 2016. Suivi des impacts des parcs éoliens terrestres sur les populations de Chiroptères, Version 2 (février 2016). Société Française pour l'Étude et la Protection des Mammifères, Paris, 17 pages.
- Grünkorn, T., A. Diederichs, B. Stahl, D. Dörte & G. Nehls (2005): Entwicklung einer Methode zur Abschätzung des Kollisionsrisikos von Vögeln an Windenergie-anlagen. Unpubl. report for Landesamtes für Natur und Umwelt Schleswig-Holstein: 92 pp.
- Grünkorn T, von Rönn J, Blew J, Nehls G, Weitekamp S, Timmermann H, Reichenbach M, Coppack T (2016). Détermination des taux de collision des oiseaux (y compris rapaces) et principes fondamentaux pour prévoir et évaluer le risque de collision dans la conception des projets éoliens (projet de recherche PROGRESS). (p27).
- Hayes, M.A. (2013): Bats Killed in Large Numbers at United States Wind Energy Facilities. BioScience 63(12): 975-979.

- Hayes, M. A., L. A. Hooton, K. L. Gilland, C. Grandgent, R. L. Smith, S. R. Lindsay, J. D. Collins, S. M. Schumacher, P. A. Rabie, J. C. Gruver, and J. Goodrich-Mahoney. (2019) A smart curtailment approach for reducing bat fatalities and curtailment time at wind energyfacilities. Ecological Applications 00(00):e01881.
- Hedenström A. 2009. Optimal migration strategies in bats. Journal of Mammalogy, 90(6):1298–1309, 2009
- Heim, O., Schröder, A., Eccard, J., Jung, K. & Voigt, C.C. (2016) Seasonal activity patterns of European bats above intensively used farmland. Agriculture, Ecosystems and Environment, 233, 130–139.
- Hensen, von F. (2004): Gedanken und Arbeitshypothesen zur Fledermausvertr glichkeit von Windenergieanlagen. Nyctalus (N.F.) 9 (5): 427-435.
- Hodos W (2003). Minimization of Motion Smear: Reducing Avian Collisions with Wind Turbines. (p43).
- Horn J.W. Arnett E.B. & Kunz T.H. 2008. Behavioral responses of bats to operating wind turbines. The Journal of Wildlife Management 72(1): 123-132
- Holzhaider J. & Zahn A. 2001. Bats in the Bavarian Alps: species composition and utiliszation of higher altitudes in summer. Z. Säugetierk., 66(2): 144-154.
- Hötker H, Thomsen KM, Jeromin H (2006). Impacts on biodiversity of exploitation of renewable energy sources: the example of birds and bats. (p65).
- Hull C.L. & Cawthen L. 2013. Bat fatalities at two wind farms in Tasmania, Australia: Bat characteristics, and spatial and temporal patterns. New Zealand Journal of Zoology 40(1): 5–15.
- Huso, M.M.P. (2010): An estimator of wildlife fatality from observed carcasses. Environmetrics: doi: 10.1002/env.
- Huso, M. et al. 2012. Fatality estimator users guide. US Geological Survey Data Series 729.
- Hutterer R. Ivanova T. Meyer-Cords C. & Rodrigues L. 2005. Bat migrations in Europe. A review of banding data and literature. Natursch. Biol. Vielf., 28: 3-162 + app.
- Jain, A. et al. 2007. Annual report for the Maple Ridge wind power project: post-construction bird and bat fatality study 2006. Final report. L. Curry & Kerlinger. Syracuse, NY, Curry & Kerlinger, LLC: 53.
- Johnson G.D. Erickson W.P. Strickland M.D. Shepherd M.F. & Shepherd D.A. 2003. Mortality of bats at a Large-scale wind power development at Buffalo Ridge, Minnesota. Am. Midl. Nat.150: 332-342.
- Jones et al. (2009). Altamont Pass Wind Resource Area 48-Hour Search Interval Bird Fatality Study. (p22).
- Kaňuch P. and Krištín A. 2007. Factors influencing bat assemblages in forest parks. Ekológia (Bratislava)24:45–56.
- Kapfer G. & Aron S. 2007. Temporal variation in flight activity, foraging activity and social interactions by bats around a suburban pond. Lutra, 50(1): 9-18.
- Kerns J. Erickson W.P. & Arnett E.B. 2005. Bat and bird fatality at wind energy facilities in Pennsylvania and West Virginia in Relationships between bats and wind turbines in Pennsylvania and West Virginia: an assessment of fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines, Pour Bat and Wind Energy Cooperative. E.B Arnett, ed. pp. 24-95.
- Körner-Nievergelt, F., Brinkmann R., I. Niermann & O. Behr (2013): Estimating Bat and Bird Mortality Occurring at Wind Energy Turbines from Covariates and Carcass Searches Using Mixture Models. PLoS ONE 8 (7): e67997. doi: 10.1371/journal.pone.0067997

- Korner-Nievergelt, F., P. Korner-Nievergelt, O. Behr, I. Niermann, R. Brinkmann & B. Hellriegel (2011): A new method to determine bird and bat fatality at wind energy turbines from carcass searches. Wildl. Biology 17 (4): 350-363
- Kronwitter F. 1988. Population structure, habitat use and activity patterns of the Noctule bat, Nyctalus noctula Schreb., 1774 (Chiroptera: Vespertilionidae) revealed by radio-tracking. Myotis, 26: 23-85.
- Krijgsveld KL et al. (2009). Collision risk of birds with modern large wind turbines. (p10).
- Krüger T, Garthe S (2001). Flight altitudes of coastal birds in relation to wind direction and speed. (p14).
- Kunz, T.H., Arnett E.B., Erickson W.P., Hoar A.R., Johnson G.D., Larkin R.P., Strickland M.D., R.W. Thresher & M.D. Tuttle (2007). Ecological impacts of wind energy development on bats: questions, research needs and hypotheses. Frontiers in Ecology 5: 315–324.
- Lagrange, H., E. Roussel, A.-L. Ughetto, F. Melki, G. Steinmetz & C. Kerbirou (2011): Chirotech, A Multi-Factorial Mitigation process to reduce Bat fatalities at wind energy facilities. In: Hutson A.M., P.H.C. Lina (eds.): XII European Bat Research Symposium - Programme, abstract, list of participants: 33.
- Lagrange, H., P. Rico, Y. Bas, A-L. Ughetto, F. Melki & C. Kerbiriou (2013): Mitigating bat fatalities from wind-power plants through targeted curtailment:results from 4 years of testing of CHIROTECH©. Presentation at the CWE in Stockholm 5-7 February 2013 and at the 16th International Bat Research Conference, Costa Rica.
- Le Campion T. & Dubos T. 2017. Etude la migration des chauves-souris en Bretagne 2013-2016 : rapport final mai 2017. G.M.B., 52 p.
- Lebreton, J.-D. et al. 1992. Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62: 67–118.
- Lehnert, L.S., Kramer-Schadt, S., Schönborn, S., Lindecke, O., Niermann, I. & Voigt, C.C. (2014) Wind farm facilities in Germany kill noctule bats from near and far. PLoS ONE, 9, e103106.
- Limpens H.J.G.A. Boonman, M. Korner-Nievergelt F. Jansen E.A. Van der Valk M. La Haye M.J.J. Dirksen S. & Vreugdenhil S.J. 2013. Wind turbines and bats in the Netherlands Measuring and predicting. Report 2013. 12, Zoogdiervereniging & Bureau Waardenburg.
- Long, C. V., J.A. Flint & P.A. Lepper (2011): Insect attraction to wind turbines: does colour play a role? European Journal of Wildlife Research 57 (2), 323-331.
- Loss SR, Will T, Marra PP (2013). Estimates of bird collision mortality at wind facilities in the contiguous United States. (p9).
- Madders M, Whitfield DP (2006). Upland raptors and the assessment of wind farm impacts. (p14).
- Martin, C.M., Arnett, E.B., Stevens, R.D. & Wallace, M.C. (2017) Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation. Journal of Mammalogy, 98, 378–385.
- Marx G., (2017). Le parc éolien français et ses impacts sur l'avifaune. Etude des suivis de mortalité réalisés en France de 1997 à 2015. Juin 2017, actualisé en esptembre 2017, 92 p.
- McAney C.M. & Fairley J.S. 1990. Observations at summer roosts of the lesser horseshoe bat in co clare. Ir. Nat. J. 23(1).
- MRNF. 2008. Protocole de suivi des mortalités d'oiseaux de proie et de chiroptères dans le cadre de projets d'implantation d'éoliennes au Québec 8 janvier 2008. Ministère des Ressources naturelles et de la Faune, Secteur Faune Québec. 18 pages.

- Natural England (2007): Disturbance and protected species: understanding and applying the law in England and Wales. Natural England, 24/8/07, 30 pages. Available: http://webarchive.nationalarchives.
 - gov.uk/20140605090108/http://www.natualengland.org.uk/Images/esisgd_tcm6-3774.pdf
- Niermann, I., O. Behr & R. Brinkmann (2007): Methodische Hinweise und Empfehlungen zur Bestimmung von Fledermaus-Schlagopferzahlen an Windenergiestandorten. Nyctalus (N.F.) 12 (2-3): 152-162.
- Niermann I. Brinkmann R. Korner-Nievergelt F. Behr O. 2011. Systematische Schlagopfersuche Methodische Rahmenbedingungen, statistische Analyseverfahren und Ergebnisse. In: Brinkmann, R., Behr, O., Niermann, I. & Reich, M. (ed.): Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen. Umwelt und Raum 4: 40-115
- Norberg U.M. Rayner J.M.V. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. B Biol. Sci. 316: 335-427.
- Parsons S. & Jones G. 2000. Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. J. exp. Biol. 203: 2641±2656.
- Parsons, K.N., G. Jones, I. Davidson-Watts & F. Greenaway (2003): Swarming of bats at underground sites in Britain implications for conservation. Biol. Conservation 111 (1): 63-70.
- Péron, G., J.E. Hines, J.D. Nichols, W.L. Kendall, K.A. Peters & D.S. Mizrahi (2013) Estimation of bird and bat mortality at wind-power farms with superpopulation models. Journal of Applied Ecology 50(4): 902-911.
- Pollock, R. 2007. Recommended formulas for adjusting fatality rates. California guidelines for reducing impacts to birds and bats from wind energy development. Final commission report. C. E. C. a. C. D. o. F. a. Game. California Energy Commission, Renewables Committee, and Energy Facilities Sitting Divisions, and California Dept of Fish and Game, Resources Management and Policy Division, pp. 117–118.
- Protocole de suivi environnemental des parcs éoliens terrestres, 2015.
- Rachwald A. 1992. Habitat preference and activity of the noctule bat Nyctalus noctula in the Bialowieza Primeval Forest. Acta Theriol. 37, 413-422.
- Redell D. Arnett E.B. Hayes J.P. & Huso M. 2006. Patterns of pre-construction bat activity at a proposed wind facility in south-central Wisconsin. A final report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USA. 52 p.
- Rico, P. & H. Lagrange (2011): Chirotech, Bilan des tests d'asservissement sur le parc du Mas de Leuze (commune de Saint-Martin-de-Crau, 13) 2011. Rapport Biotope, contrat n°8 pour l'ADEME, 51 pages.
- Rodrigues L. Bach L. Dubourg-Savage M.-J. Goodwin J. & Harbush C. 2008. Lignes directrices pour la prise en compte des chauves-souris dans les projets éoliens. EUROBATS Publication Series No. 3 (version française). PNUE/EUROBATS Secretariat, Bonn, Germany
- Rodrigues, L. Bach, M-J. Dubourg-Savage, B.Karapandza, D.Kovac, T.Kervyn, J.Dekker, A.Kepel, P.Bach, J.Collins, C.Harbusch,K.Park, B.Micevski, J.Minderman (2015) Lignes directrices pour la prise en

- compte des chauves-souris dans les projets éoliens Actualisation 2015. EUROBATS Plublication Serie N° 6 (Version française). UNEP/EUROBATS Secrétariat, Bonn, Allemagne, 133p.
- Rollins, K.E., D. K. Meyerholz, G.D. Johnson, A.P. Capparella & S.S. Loew (2012): A Forensic Investigation Into the Etiology of Bat Mortality at a Wind Farm: Barotrauma or Traumatic Injury? Veterinary Pathology 49 (2): 362-371
- Russ J.M. 1999a. The bats of Britain and Ireland. Echolocation calls, sound analysis and species identi®cation. Newtown: Alana Books. 102
- Russ J.M. 1999b. The Microchiroptera of Northern Ireland: community composition, habitat associations and ultrasound. Unpbl. PhD thesis, The Queen's University of Belfast
- Rydell J. Bach L. Dubourg-Savage M-J. Green M. Rodrigues L. & Hedenström A. 2010a. Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica 12(2): 261-274
- Rydell J. Bach L. Dubourg-Savage M-J. Green M. Rodrigues L. & Hedenström A. 2010b. Mortality of bats at wind turbines links to nocturnal insect migration? Eur. J. Wildl. Res., 56(6): 823-827.
- Sané, F. (2012): Contrôle de l'impact post-implantation du parc éolien de Lou Paou sur les habitats, l'avifaune et les chiroptères : Bilan de 3 années de suivi (2008-2009-2010). ALEPE, unpublished report for EDF EN, 111 pages.
- Sattler T. & Bontadina F. 2005. Bases pour l'évaluation écologique de deux secteurs d'installations éoliennes en France sur la base de la diversité et l'activité des chauvessouris. Compte-rendu succinct, SWILD, Zürich par ordre de Megawatt Eole, Stuttgart, 23p.
- Schaub, A., J. Ostwald & B.M. Siemers (2008): Foraging bats avoid noise. The Journal of Experimental Biology 211: 3174-3180.
- Seiche K. Endl P. & Lein M. 2007. Fledermäuse und Windenergieanlagen in Sachsen Ergebnisse einer landesweiten Studie. Nyctalus (N.F.) 12 (2-3): 170-181.
- Silva R. 2009. Effet des conditions météorologiques sur l'activité de chasse des Chiroptères. M.N.H.N., C.R.B.P.O., 36p.
- Smallwood, K. 2007. Estimating wind turbine Caused bird mortality. Journal of wildlife management 71(8): 2781-2791.
- Stone, E.L., G. Jones & S. Harris (2009): Street Lighting Disturbs Commuting Bats. Current Biology 19(13): 1123-1127. Doi:10.1016/j.cub.2009.05.058.
- Swift S.M. 1980. Activity patterns of pipistrelle bats (Pipistrellus pipistrellus) in north-east Scotland. Journal of Zoology, London, 190, 285-295.
- Therkildsen OR, Elmeros M (2015). First year post-construction monitoring of bats and birds at wind turbine test Centre Østerild. (p128).
- Thonnerieux Y Natur'ailes (2005). Éoliennes et Oiseaux : quelles conséquences ? (p6).
- Voigt, Ch.C., A.G. Popa-Lisseanu, I. Niermann & S. Kramer-Schadt (2012): The catchment area of wind farms for European bats: A plea for international regulations. Biological Conservation 153: 80-86
- Warren-Hicks, W., J. Newman, R. Wolpert, B. Karas & L. Tran (2013): Improving methods for estimating fatality of birds and bats at wind energy facilities. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Commission. February 2013.
- Whitaker J.O.Jr. 1998. Life history and roost switching in six summer colonies of eastern pipistrelles in buildings. Journal of Mammalogy 79 (2): 651-659.

Young Jr DP, Erickson WP, Strickland MD, Good RE, Sernka KJ (2003). Comparison of avian responses to UV-Light-Reflective Paint on Wind Turbines. (p67).

Annexes

Annexe 1 : Fiche de données remplie à chaque sortie mortalité

e: Observateur:									
Date	He Début	ure Fin	T Début	°C Fin	Couverture nuageuse (%)	Pluie (absente, bruine, averses)	Vent (absent, faible, moyen à fort)	Surface prospectée (approx.)	Cadavre (n° + espèce

Annexe 2 : Fiche de données remplie pour chaque cas de mortalité

	Parc												
			J										
Eolienne	Type	Espèce			Sexe / Etat	Age		Mesures		Etat	Blessure	Codes photos	Végétation
	(O/C)		Х	Y	sexuel		AB	D3	D5	cadavre			
Ad) ; imm	ature (lm)	; juvénile ((juv)										
st-lactante	(PL= tétin	es visibles	s) ; Epididyr	mes et/ou g	onades go	onflées (E0	G/GG); No	n reprodu	ctrice (NR) ; Epididy	mes/gona	dess non	gonflées (EN
: Frais (F)	; Avancé (Av); Décor	mposé (Dé	c) ; Sec (S)									
	Ad); imm.	Eolienne Type (O/C) Ad); immature (Im) st-lactante (PL= tétin	Eolienne Type (O/C) Espèce Ad); immature (Im); juvénile ist-lactante (PL= tétines visibles	Eolienne Type (O/C) Espèce (Lamb X) Ad); immature (Im); juvénile (juv) st-lactante (PL= tétines visibles); Epididyr	Eolienne Type (O/C) Espèce Point GPS (Lambert 93) X Y Ad); immature (Im); juvénile (juv)	Eolienne Type (O/C) Espèce Point GPS (Lambert 93) Etat sexuel X Y Ad); immature (Im); juvénile (juv) st-lactante (PL= tétines visibles); Epididymes et/ou gonades go	Eolienne Type (O/C) Espèce Point GPS (Lambert 93) Etat sexuel X Y Age Age Ad); immature (Im); juvénile (juv) st-lactante (PL= tétines visibles); Epididymes et/ou gonades gonflées (EG	Eolienne Type (O/C) Espèce Point GPS (Lambert 93) Etat sexuel AB AB AB AB AB AB AB AB AB AB	Eolienne Type (O/C) Espèce (Lambert 93) Etat sexuel Age AB D3 Ad) ; immature (Im) ; juvénile (juv) st-lactante (PL= tétines visibles) ; Epididymes et/ou gonades gonflées (EG/GG); Non reprodu	Eolienne Type (O/C) Espèce Repèce (Lambert 93) Etat sexuel Age AB D3 D5 X Y Sexuel AB D3 D5 AB	Eolienne Type (O/C) Espèce Point GPS (Lambert 93) Etat sexuel Age AB D3 D5 Etat cadavre X Y Y Sexuel AB D3 D5 Etat cadavre AB D3 D5 AB D3 D5	Eolienne Type (O/C) Espèce Espèce (Lambert 93) Etat sexuel Age AB D3 D5 Etat cadavre Blessure	Eolienne Type (O/C) Espèce Espèce (Lambert 93) Etat sexuel Age AB D3 D5 Etat adavre Photos AB D3 D5 Codes photos

Annexe 3 : Présentation de la fiche de saisie standardisée de la mortalité

FICHE DE TERRAIN STANDARDISEE – MORTALITE OISEAUX										
Nom du parc éolie	n :									
Point n°	Date:	Heure :	Nom du découvreur :							
Localisation :										
Coordonnées GPS (en WGS 84) + indication sur carte										
Latitude :	Latitude:									
Longitude :										
Numéro de l'éolien	ne la plus proche :		W							
Distance au mât de	l'éolienne la plus pro	oche (en m) :								
Orientation par rap	port à l'éolienne la p	lus proche :	, S							
Couverture végétal	e au niveau de la déc	ouverte (type, hauteur):							
N° de photos :										
Description et identification :										
Taille de l'oiseau (a	iles déployées) :									
Particularités (coule	eur, forme quelconqu	ıe) :								
Identification (fami	lle, espèce si possible):								
Etat de l'individu :										
□ Vivant (blessé)		□ Mort	□ Fragment							
Etat du cadavre :										
□ Frais	□ Avancé	□ Décomposé	□ Sec							
Cause présumée de la mort (collision avec pale, avec tour) :										
COMMENTAIRES :										

Annexe 4 : Sorties mortalité réalisées en 2022

Chercheurs	Période biologique avifaune (théorique)	Période biologique chiroptère (théorique)	Date	Heure début	Heure fin	T. début (°C)	T. fin (°C)	CN (%)	Pluie	Vent
Lucile MARGOT		Transits printaniers (16 mars - 31 mai)	24/05/2022	10:35	11:46	14	15	60	absente	faible
Margot FÉVRIER			03/06/2022	9:50	11:12	18	19	80	averses	faible
Lucile MARGOT			07/06/2022	9:56	11:47	17	18	75	averses	faible
Lucile MARGOT			13/06/2022	10:22	11:24	17	19	0	absente	faible
Lucile MARGOT		Mise-bas / Élevage des	20/06/2022	10:03	11:37	20	21	55	absente	faible
Lucile MARGOT	N 11 - 11 51 11	jeunes	27/06/2022	12:02	13:38	19	20	0	absente	faible
Lucile MARGOT	Nidification (1 ^{er} mai - 31 août)	(1 ^{er} juin - 15 août)	04/07/2022	10:56	13:08	20	22	20	absente	faible
Lucile MARGOT			11/07/2022	9:21	12:10	19	24	0	absente	faible
Lucile MARGOT			27/07/2022	10:35	13:36	21	23	10	absente	faible
Margot FÉVRIER			10/08/2022	9:20	12:27	25	34	0	absente	faible
Lucile MARGOT			16/08/2022	8:21	12:56	18	24	95	absente	faible
Lucile MARGOT			24/08/2022	9:33	12:10	21	30	25	absente	faible
Lucile MARGOT			30/08/2022	9:40	12:16	20	18	100	averses	faible
Lucile MARGOT			07/09/2022	10:22	13:07	19	21	100	absente	faible
Lucile MARGOT		Transite automount	14/09/2022	10:16	12:49	20	22	95	averses	moyen à fort
Lucile MARGOT		Transits automnaux / Swarming	21/09/2022	9:48	12:24	9	18	10	absente	moyen à fort
Céline SERRES	Migrations postnuptiales	(16 août - 15 novembre)	29/09/2022	11:46	14:15	13	19	90	absente	moyen à fort
Lucile MARGOT	(1 ^{er} septembre - 30 novembre)		05/10/2022	9:57	12:19	13	20	0	absente	moyen à fort
Lucile MARGOT			13/10/2022	10:44	12:54	13	15	100	averses	moyen à fort
Margot FÉVRIER			19/10/2022	12:00	14:17	20	27	90	absente	moyen à fort
Lucile MARGOT			27/10/2022	10:15	12:54	16	22	100	absente	moyen à fort
T.: température /	H.: heure.								l	

Annexe 5 : Cas de collision avec des chiroptères recensés en France et en Europe au 17 juin 2022 (d'après Dürr, 2022)

Espèces	Europe	France
Pipistrelle commune	2 569	1 124
Pipistrelle de Nathusius	1 662	303
Noctule commune	1 616	147
Chiroptère sp.	1 105	447
Pipistrelle sp.	758	316
Noctule de Leisler	753	186
Pipistrelle de Kuhl	471	221
Pipistrelle pygmée	455	176
Pipistrelle commune / pygmée	412	40
Vespère de Savi	344	57
Sérotine bicolore	217	11
Sérotine commune	130	38
Sérotine Isabeline	120	0
Sérotine commune / Isabeline	115	0
Molosse de Cestoni	84	2
Sérotine de Nilsson	45	0
Grande Noctule	41	10
Noctule sp.	24	3
Minioptère de Schreibers	13	7
Murin de Daubenton	11	1
Murin sp.	10	1
Oreillard gris	9	0
Oreillard roux	8	0
Grand Murin	7	3
Petit Murin	7	1
Barbastelle commune	6	4
Murin à mustaches	6	2
Murin à oreilles échancrées	5	3
Murin de Natterer	4	1
Murin des marais	3	0
Murin de Bechstein	2	2
Murin de Brandt	2	0
Grand Rhinolophe	1	0
Rhinolophe de Mehely	1	0
Rhinolophe sp.	1	0

Annexe 6 : Cas de collision avec l'avifaune recensés en France et en Europe au 17 juin 2022 (d'après Dürr, 2022)

Ordre	France	Europe
Passeriformes	791	4 880
Accipitriformes	309	4 871
Falconiformes	243	900
Apodiformes	155	487
Charadriiformes	132	2 866
Columbiformes	120	677
Galliformes	78	609
Anseriformes	14	611
Strigiformes	11	120
Pelecaniformes	8	160
Suliformes	4	22
Gruiformes	3	98
Coraciiformes	3	14
Ciconiiformes	2	171
Piciformes	2	22
Inconnu	1	7
Cuculiformes	0	16
Bucerotiformes	0	9
Pterocliformes	0	6
Caprimulgiformes	0	3
Podicipediformes	0	3
Procellariiformes	0	3
Gaviiformes	0	1
Psittaciformes	0	1

Annexe 7 : Fiches de saisie standardisées de la mortalité du parc éolien Pièce de Vignes